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Abstract: We determine the geometry of supersymmetric heterotic string backgrounds

for which all parallel spinors with respect to the connection ∇̂ with torsion H, the NS⊗NS

three-form field strength, are Killing. We find that there are two classes of such back-

grounds, the null and the timelike. The Killing spinors of the null backgrounds have

stability subgroups K n R
8 in Spin(9, 1), for K = Spin(7), SU(4), Sp(2), SU(2) × SU(2)

and {1}, and the Killing spinors of the timelike backgrounds have stability subgroups G2,

SU(3), SU(2) and {1}. The former admit a single null ∇̂-parallel vector field while the

latter admit a timelike and two, three, five and nine spacelike ∇̂-parallel vector fields, re-

spectively. The spacetime of the null backgrounds is a Lorentzian two-parameter family

of Riemannian manifolds B with skew-symmetric torsion. If the rotation of the null vec-

tor field vanishes, the holonomy of the connection with torsion of B is contained in K.

The spacetime of time-like backgrounds is a principal bundle P with fibre a Lorentzian

Lie group and base space a suitable Riemannian manifold with skew-symmetric torsion.

The principal bundle is equipped with a connection λ which determines the non-horizontal

part of the spacetime metric and of H. The curvature of λ takes values in an appropriate

Lie algebra constructed from that of K. In addition dH has only horizontal components

and contains the Pontrjagin class of P . We have computed in all cases the Killing spinor

bilinears, expressed the fluxes in terms of the geometry and determine the field equations

that are implied by the Killing spinor equations.
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1. Introduction

It has been known for some time that the geometry of supersymmetric heterotic string

backgrounds resembles that of Riemannian manifolds that appear in the Berger classifica-

tion list and admit parallel spinors. This is because the gravitino Killing spinor equation is

a parallel transport equation for a metric connection ∇̂ with torsion given by the NS⊗NS

three-form field strength H. Therefore the solutions of the gravitino Killing spinor equa-

tion are characterized by the holonomy of ∇̂, hol(∇̂). This holonomy group is contained in

the stability subgroup G of the parallel spinors in a suitable spin group. Berger classified

the irreducible Riemannian manifolds using the holonomy of the Levi-Civita connection.

Similarly, the holonomy of the Levi-Civita connection ∇ of these Riemannian manifolds

which in addition admit parallel spinors is again contained in the stability subgroup of the

spinors. Because of this, it has been expected that there must be a relation between the

holonomies of ∇̂ that appear in supersymmetric heterotic string backgrounds and those

of the Levi-Civita connection ∇ of Berger irreducible Riemannian manifolds that admit

parallel spinors as both are contained in the stability subgroups of the parallel spinors. It

turns out that there is such a relation but there are also differences because the spacetime

of supersymmetric heterotic backgrounds is a Lorentzian and not a Riemannian manifold.

So the stability subgroups of the parallel spinors are in Spin(n − 1, 1) instead of Spin(n)

which is suitable for Riemannian manifolds. In addition, the heterotic string supergravity

has two more Killing spinor equations associated with the dilatino and gaugino supersym-

metry transformations.
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The geometry of manifolds that admit a metric connection with skew-symmetric tor-

sion has been extensively investigated in the literature. Such geometries appear in the

context of supersymmetric one- and two-dimensional sigma models, see e.g. [1 – 4]. They

have also been explored as supersymmetric solutions of the common sector of type II theo-

ries and heterotic supergravity, and their properties have been examined using the Killing

spinor bilinear forms, see e.g. [5 – 7]. Deformations of these geometries due to higher cur-

vature corrections of the heterotic string have been investigated in e.g. [5, 8 – 11]. It has

been recognized some time ago that these geometries with torsion are closely related to

the standard geometries, like Kähler, Calabi-Yau and hyper-Kähler, see e.g. [12 – 18], and

they have found applications in the geometry of black-hole moduli spaces [19 – 21]. More

recently, these geometries with torsion have been studied using the Gray-Hervella classifi-

cation techniques [22], see e.g. [23 – 27]. So far in the applications of these geometries in

the context of ten-dimensional supergravity, it has been assumed that the spacetime is a

product, R
9−n,1 × Xn, and the non-trivial part of the geometry is that of the Riemannian

manifold Xn. We shall not make such an assumption and we shall find that the spacetime

geometry of supersymmetric heterotic backgrounds is not always a product.

In this paper, we shall use the method developed in [28] to systematically investigate all

possible geometries of supersymmetric heterotic string backgrounds. The parallel transport

equation , ∇̂ε = 0, implies that

R̂ε = 0 , (1.1)

where R̂ is the curvature of ∇̂ and takes values in spin(9, 1). If the Killing spinors ε have

a non-trivial stability subgroup G in Spin(9, 1), G ⊂ Spin(9, 1), then the holonomy of ∇̂
must be a subgroup of G, hol(∇̂) ⊆ G. The Killing spinors are the singlets of G in the

decomposition of the Majorana-Weyl representation ∆+
16

of Spin(9, 1) under G. On the

other hand if the stability subgroup is {1}, then the holonomy of ∇̂ is the identity and

R̂ = 0 . (1.2)

Therefore either the Killing spinors are singlets of a proper subgroup of G ⊂ Spin(9, 1) or

R̂ = 0. In the former case, we shall give all the spinors which are singlets of a subgroup

of Spin(9, 1). Some of these are related to the parallel spinors that exist on the manifolds

that appear in the Berger classification list and have been presented in [29]. However

in our case the stability subgroups are somewhat different because the spacetime is a

Lorentzian manifold. In the latter case, the spacetime is parallelizable with respect to the

∇̂ connection. Using this, we shall show that the spacetime is a Lorentzian metric Lie

group and that ∇̂ is a parallelizable connection.

The investigation of the gaugino Killing spinor equations Fε = 0 is similar to that

of the curvature condition R̂ε = 0. This is because the Clifford element F lies in the

spin(9, 1) subspace of the Clifford algebra. If the spinors ε that satisfy Fε = 0 have a

non-trivial stability subgroup G in Spin(9, 1), then the curvature F takes values in the Lie

algebra g ⊆ spin(9, 1) of G. If the stability subgroup is {1}, then F = 0 and the gauge

connection is flat. In addition, the expression Fε for any spinor ε can be read off from that
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for the gravitino Killing spinor equation, in particular from the part that contains the spin

connection. Because of this, we shall not explore further the supersymmetry conditions

that arise from the gaugino Killing spinor equation.

The dilatino Killing spinor equation is somewhat different from the gravitino and

gaugino Killing spinor equations. In particular, there is no understanding of the solutions

of the dilatino Killing spinor equation in terms of Lie subalgebras of spin(9, 1) similar to

the one presented above for the gravitino and gaugino Killing spinor equations. However it

can be analyzed using representation theory. It is also known that there are backgrounds1

with spinors which solve the gravitino but not the dilatino Killing spinor equation. Because

of this, we shall restrict our attention to those backgrounds for which all the solutions of the

gravitino Killing spinor equation are also solutions of the dilatino one, i.e. all ∇̂-parallel

spinors are Killing. In the terminology of [31], these are the maximally supersymmetric

G-backgrounds, where G is the stability subgroup of the Killing spinors.

It is convenient to characterize the supersymmetric heterotic string backgrounds in

terms of the number of supersymmetries they admit, which we denote with N , and the

stability subgroup of the Killing spinors G in Spin(9, 1), [32, 33]. We shall show that

the stability subgroups G of the Killing spinors are either compact groups K, G = K,

for K = G2(N = 2), SU(3)(N = 4), SU(2)(N = 8), {1}(N = 16) or G = K n R
8, for

K = Spin(7)(N = 1), SU(4)(N = 2), Sp(2)(N = 3), SU(2) × SU(2)(N = 4), {1}(N = 8),

where N denotes the number of supersymmetries. In the former case the stability subgroups

G are those expected from the Berger classification list. The latter case has no Riemannian

analogue and is due to the Lorentzian signature of spacetime but the subgroups K appear

in the Berger classification list. The Killing spinors are chiral with respect to a suitable

chirality projector of a Clifford algebra Cliff(R8) ⊂ Cliff(R9,1).

We shall show that the supersymmetric backgrounds for which the Killing spinors have

a compact stability subgroup admit a time-like and at least two space-like parallel vector

spinor bilinears2 with respect to ∇̂. Because of this, we shall refer to them as time-like

backgrounds. The commutator of the parallel vector fields does not necessarily vanish

and the structure constants depend on the NS⊗NS three-form field strength H. If one

imposes the condition that the algebra h spanned by parallel vectors constructed from the

spinor bilinears closes under Lie brackets, then the spacetime M for K 6= {1} is (locally) a

principal bundle M = P (H, B, π) equipped with the connection λ, where H is a Lie group

with Lie algebra h and base space B which is the space of orbits of the parallel vector fields.

The backgrounds with K = {1} are maximally supersymmetric and it has been shown in

[34] that the spacetime is locally isometric to R
9,1, H = 0 and Φ = const. The spacetime

metric and torsion can be written as

ds2 = ηab λaλb + gh ,

1Examples of such manifolds are Lorentzian metric groups for which all spinors are parallel with respect

to the left-invariant connection but such backgrounds typically preserve 1/2 of the supersymmetry because

half of these spinors do not solve the dilatino Killing spinor equation.
2Since the Killing spinors are parallel with respect to ∇̂, all the Killing spinor form bilinears α are also

parallel with respect to ∇̂, ∇̂α = 0.
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H =
1

3
ηab λa ∧ dλb +

2

3
ηab λa ∧ Fb + Hh , (1.3)

where gh and Hh are the horizontal components of the metric and H, F is the curvature

of the connection λ and η is a Lorentzian invariant metric on H. The dilaton Φ depends

only on the coordinates of B. In addition

dH = ηab Fa ∧ Fb + dHh . (1.4)

Therefore dH contains a representative of the first Pontrjagin class of P . The Killing spinor

equations impose restrictions on H, F and the geometry of the base space B. The gravitino

Killing spinor equation implies that the spacetime admits a K-structure compatible with

a metric connection with skew-symmetric torsion, hol(∇̂) ⊆ K. There are three kinds

of conditions that arise from the dilatino Killing spinor equation. One set of conditions

imposes restrictions on the Lie group H, another set of conditions suitably restricts the

curvature F of the connection λ, and the third set of conditions implies restrictions on the

geometry of B.

In particular, for K = G2, H has Lie algebra either sl(2, R) or u(1) ⊕ u(1) ⊕ u(1); for

K = SU(3), H is a four-dimensional Lorentzian Lie group but otherwise unrestricted; for

K = SU(2), H is a six-dimensional Lorentzian metric Lie group but the dilatino Killing

spinor equation imposes restrictions of its structure constants which we determine.

The second set of conditions of the dilatino Killing spinor equation implies that the

connection λ is a k instanton, i.e. F takes values in the Lie algebra k of K. This is the

case for all K apart from K = SU(3) and H non-abelian, where F satisfies the Donaldson

conditions and takes values in su(3) ⊕ u(1).

The base space B has dimension, dim B = 7, 6, 4 for K = G2, SU(3), SU(2), respec-

tively. In addition B admits a conformally balanced and integrable K-structure, and a com-

patible metric connection ˆ̃∇ with skew-symmetric torsion H̃, Hh = π∗H̃, i.e. hol ( ˆ̃∇) ⊆ K.

This is the case for all K apart from K = SU(3) and H non-abelian, where B admits an

SUc(3) = SU(3) ×Z R-structure, where R = U(1) or R = R and Z is a discrete group.

The additional R twist is due to a one-dimensional representation ρ of H and the asso-

ciated line bundle L = P ×ρ C. The conformally balanced structure is due to the fact

that a Lee form of the K-structure of B is related to the exterior derivative of the dilaton

as consequence of the conditions that arise from the dilatino Killing spinor equation. An

integrability of the K-structure is also implied by the dilatino Killing spinor equations.

This is suitably defined for all K. For example, if K = SU(3), then the associated almost

complex structure is integrable and B is a complex manifold. Furthermore, if K = G2 and

H is abelian, then dilatino Killing spinor equation also requires that dϕ̃ is orthogonal to

?ϕ̃, where ϕ̃ is a G2 invariant form on B. In the non-abelian case, this is not the case

and the inner product (dϕ̃, ?ϕ̃) is related to the structure constants of H. In all the above

cases, the NS⊗ NS three-form H is determined by the form Killing spinor bilinears and

the metric of the spacetime. In addition, the integrability conditions of the Killing spinor

equations imply all the field equations provided that the Bianchi identities of H and F are

satisfied.
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Similarly, we shall show that the backgrounds for which the Killing spinors have sta-

bility subgroup K n R
8, for K = Spin(7)(N = 1), SU(4)(N = 2), Sp(2)(N = 3), SU(2) ×

SU(2)(N = 4), {1}(N = 8), admit a single null parallel one-form spinor bilinear κ with

respect to ∇̂. Because of this, we shall refer to them as null backgrounds. If one adapts

coordinates with respect to the null Killing vector field X associated to κ, X = ∂/∂u, then

the metric and torsion can be written as

ds2 = 2e−e+ + δije
i
Ie

j
JdyIdyJ ,

H = e+ ∧ de− +
1

2
(Hk

−ij + Hk
⊥

−ij) e− ∧ ei ∧ ej +
1

3!
Hijke

i ∧ ej ∧ ek , (1.5)

where κ = e− = (dv + mIdyI) and e+ = du + V dv + nIdyI , and Hk

−ij and Hk
⊥

−ijdenote the

components of H−ij in the subalgebra k of K and its orthogonal complement in Λ2(R8),

Λ2(R8) = k ⊕ k⊥. Moreover, Hk
⊥

−ij = 2Ωk
⊥

−,ij in a suitably chosen frame. The Killing spinor

equations determine all components of the NS⊗NS flux H in terms of the form Killing

spinor bilinears and the spacetime metric apart from the component Hk

−ij. In addition,

they imply that dκ = de− takes values in k ⊕s R
8, where ⊕s denotes semi-direct sum of

Lie algebras. A consequence of this is that the null parallel vector field leaves invariant the

K n R
8-structure of spacetime.

In all null cases, the spacetime admits a codimension eight integrable foliation with

leaves a manifold B. For generic backgrounds, B admits a K-structure which is not com-

patible with the induced metric connection ˆ̃∇ with torsion. However, if dκ = 0, then B is

a conformally balanced integrable manifold with a K-structure and compatible connection
ˆ̃∇ with torsion, i.e. hol( ˆ̃∇) ⊆ K. The conformally balanced and integrability properties

are consequences of the dilatino Killing spinor equations and are defined in a way similar

to those of the space B in the timelike backgrounds we have mentioned above. We have

also shown that the Killing spinor equations imply all field equations apart from the E−−
component of the Einstein equations, the LH−A components of the two-form gauge poten-

tial and the LF− component of the field equations of the gauge connection provided that

all the Bianchi identities are satisfied.

We also apply our results to investigate some properties of the Killing spinor equations

of the common sector of type II supergravities. We find that the IIA and IIB common

sectors should be treated separately because despite many similarities there are also dif-

ferences. We mostly focus on the IIB common sector and investigate the supersymmetry

conditions of backgrounds with two supersymmetries. We show that there are five distinct

cases to examine described by the stability subgroups of the Killing spinors.

This paper is organized as follows: in section 2, we state the field and Killing spinor

equations of heterotic supergravity and describe the integrability conditions of the latter.

In section 3, we find the stability subgroups G of spinors in Spin(9, 1) and give the G-

invariant spinors (singlets) in the Majorana-Weyl representation ∆+
16

of Spin(9, 1). In

section 4, we describe the parallel spinors and forms of supersymmetric backgrounds. We

argue that there is always a basis up to a local Lorentz transformation such that the parallel

spinors are constant. In section 5, we determine the geometry of N = 1 backgrounds. In

section 6, we give the geometry of N = 2 SU(4) n R
8-backgrounds. In section 7, we
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describe the geometry of N = 2 G2-backgrounds. In section 8, we investigate the geometry

of N = 3 backgrounds. In section 9, we determine the geometry of N = 4 SU(3)- and

(SU(2) × SU(2)) n R
8-backgrounds. In section 10, we describe the geometry of N = 8

SU(2)- and R
8-backgrounds. In section 11, we show that ∇̂-parallelizable backgrounds

are Lorentzian metric Lie groups. In section 12, we apply our results to examine the

supersymmetric solutions of the common sector of type II supergravities. In section 13,

we give our conclusions. In appendix A, we describe the spinors in terms of forms and

compute the form spinor bilinears for all singlets of a subgroup G ⊂ Spin(9, 1) in ∆+
16

. In

appendix B, we present the linear systems associated with the Killing spinor equations of

the heterotic supergravity.

2. Fields and spinors

2.1 Field and Killing spinor equations

The bosonic fields of heterotic supergravity are the metric g, the NS⊗NS three-form field

strength H, the dilaton scalar Φ, and the gauge connection A with curvature F . The field

and Killing spinor equations of the heterotic string receive string α′ corrections which can

be computed either from a sigma model beta function or from string amplitude calculations.

The field equations in the string frame to lowest order in α′ are

EMN = RMN − 1

4
HPQMHPQ

N + 2∇M∂NΦ = 0 ,

LHPQ = ∇M (e−2ΦHM
PQ) = 0 ,

LΦ = ∇2Φ − 2gMN∂MΦ∂NΦ +
1

12
HMNRHMNR = 0 ,

LFN = ∇̂M (e−2ΦFMN ) = 0 , (2.1)

where ∇ is the Levi-Civita connection of the metric g. The field equation for the dilaton

is implied from those of the metric and two-form gauge potential B associated with H,

H = dB, up to a constant. The Killing spinor equations are

∇̂ε = 0 ,

(ΓM∂MΦ − 1

12
ΓMNP HMNP )ε = 0 ,

FMNΓMNε = 0 , (2.2)

where ∇̂ = ∇ + 1
2H, ∇M ε = ∂M ε + 1

4ΩM,ABΓABε,

∇̂NY M = ∇NY M +
1

2
HM

NRY R , (2.3)

and ε is a Majorana-Weyl spinor of positive chirality, i.e. ε is described by forms of even

degree. In what follows, we shall denote the spin connection of the ∇̂ covariant derivative

with Ω̂.

– 8 –
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2.2 Integrability conditions

It is well-known that some of the field equations of supersymmetric backgrounds can be

implied by the Killing spinor equations. To find which field equations are implied, one has

to investigate the integrability conditions of the Killing spinor equations. In the case of

heterotic supergravity, these integrability conditions are, see also [35],

[∇̂M , ∇̂N ]ε =
1

4
R̂MN,ABΓABε = 0 ,

[∇̂M , FRSΓRS ]ε = 0 ,

[∇̂M , ∂NΦΓN − 1

12
HNPQΓNPQ]ε = 0 ,

[FRSΓRS , ∂NΦΓN − 1

12
HNPQΓNPQ]ε = 0 . (2.4)

Multiplying the first expression above with ΓN , using appropriately the remaining integra-

bility conditions and the identity

gMN∂MΦ∂NΦε − 1

24
HMNRHMNRε − 1

2
∂MΦHM

STΓST ε

+
1

16
HS

MNHSPQΓMNPQε = 0 , (2.5)

one finds that

R̂MA,BCΓAΓBCε = −2EMNΓNε − e2ΦLHMNΓNε − 1

6
BHMABCΓABCε = 0 ,

LΦε − 1

4
e2ΦLHMNΓMNε − 1

48
BHMNPQΓMNPQε = 0 ,

1

3
BFMNP ΓMNP ε + 2e2ΦLFNΓNε = 0 , (2.6)

where BHMNPQ = 4(dH)MNPQ and BFMNR = 3∇[MFNR]. To the order of α′ that we

have stated the field equations above, the Bianchi identity of H implies that BH = dH = 0.

However, if the heterotic string anomaly is included and so schematically, BH ∼ α′(trR2−
trF 2)+O(α′2), then, for consistency, one has to include the two-loop correction to the field

equations [9, 10].

A remarkable property of (2.6) is that if one imposes the Bianchi identities of H and

F , BH = 0 and BF = 0, respectively, then the remaining equations are up to quadratic

order in gamma matrices. As a result, it is straightforward to construct the linear sys-

tems associated with the integrability conditions from that of the Killing spinor equations.

These linear systems are similar to those investigated in the context of M-theory and IIB

supergravity in [31].

3. Stability subgroup of spinors in Spin(9, 1)

As we have mentioned in the introduction, the Killing spinors of supersymmetric back-

grounds with R̂ 6= 0 are singlets of the holonomy group hol(∇̂) of ∇̂. In addition, the

holonomy group in every case is a subgroup of the stability subgroup of the Killing spinors
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in Spin(9, 1). Therefore, we have to determine all the spinor singlets of the subgroups3

of Spin(9, 1). This analysis closely resembles that of determining the parallel spinors of

manifolds with special holonomy which has been presented in [29]. However, there are

some differences that arise because the spacetime is a Lorentzian manifold.

3.1 One spinor

There is one type of orbit of Spin(9, 1) with stability subgroup Spin(7) n R
8 in ∆+

16. The

proof of this has been given in [38] but we shall repeat the steps here because they are

useful for determining the stability subgroups of more than one spinor. Consider the spinor

1 + e1234 . (3.1)

The stability subgroup of this spinor in Spin(9, 1) is Spin(7) n R
8 as it can be seen by

solving the infinitesimal invariance equation

λABΓAB(1 + e1234) = 0 , (3.2)

where λ parameterizes the spinor transformations. This computation is most easily done

in the pseudo-Hermitian basis that we have given in (A.9). It is easy to see that the above

condition implies that the parameters are restricted as

λᾱβ̄ =
1

2
εᾱβ̄

γδλγδ , λαβ̄gαβ̄ = λ−+ = λ+α = λ+ᾱ = 0 , (3.3)

where ε1̄2̄3̄4̄ = 1. Observe that the parameters λ−α and λ−ᾱ are complex conjugate to

each other but otherwise unconstrained. The group that leaves invariant 1 + e1234 has Lie

algebra spin(7) ⊕s R
8 and so find that the stability subgroup is Spin(7) n R

8.

Having established this, we decompose ∆+
16 under the stability subgroup Spin(7) as

∆+
16 = R < 1 + e1234 > +Λ1(R7) + ∆8 , (3.4)

where the singlet R is generated by 1+e1234, Λ1(R7) is the vector representation of Spin(7)

which is spanned by the spinors associated with two-forms in the directions e1, . . . , e4 and

i(1 − e1234), and ∆8 is the spin representation of Spin(7) which is spanned by the rest of

spinors which are of the type Γ+η, η is a spinor generated by the odd forms in the directions

e1, . . . , e4. Therefore the most general spinor in ∆+
16 can be written as

η = a(1 + e1234) + θ1 + θ2 , (3.5)

where θ1 ∈ Λ1(R7) and θ2 ∈ ∆8. First we assume that a 6= 0. In this case, there are two

cases to consider depending on whether θ2 vanishes or not. If θ2 = 0, since Spin(7) acts

with the vector representation on Λ1(R7), it is always possible to choose θ1 = ib(1− e1234).

The most general spinor in this case then is

η = a(1 + e1234) + ib(1 − e1234) . (3.6)

3We only consider connected subgroups of Spin(9, 1) as stability subgroups for spinors and our compu-

tations are restricted on the Lie algebra level. However spinors can admit disconnected stability subgroups

and these are applicable to non-simply connected manifolds [36, 37].
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However, it is easy to see that this spinor is in the same orbit as 1+ e1234, e.g. observe that

η = heψΓ16(1 + e1234) , (3.7)

where h2 = a2 +b2 and tan ψ = b/a. Next suppose that θ2 does not vanish. If θ2 6= 0, there

is always a Spin(7) transformation such that θ2 = cΓ+(e1 + e234). This is because Spin(7)

acts transitively on the S7 in ∆8 and the stability subgroup is G2, Spin(7)/G2 = S7. In

addition G2 acts transitively on the S6 in Λ1(R7) with stability subgroup SU(3). So it can

always be arranged such that θ1 = ib(1 − e1234). Therefore the most general spinor in this

case is

η = a(1 + e1234) + ib(1 − e1234) + cΓ+(e1 + e234) . (3.8)

However observe that this spinor is in the same orbit of Spin(9, 1) as 1 + e1234. Indeed

η = e
b
2c

Γ−Γ6

e
c
a
Γ+Γ1

a(1 + e1234) . (3.9)

So, we find that if a 6= 0, then there is one orbit represented by a(1 + e1234). It remains

to investigate the case where a = 0. In this case, it is straightforward to see that the orbit

can always be represented by cΓ+(e1 + e234). In turn this spinor is in the same orbit of

Spin(9, 1) as c√
2
(1 + e1234) as it can seen by acting on the latter with the element Γ5Γ1 of

Spin(9, 1). As a consequence, the stability subgroup of cΓ+(e1+e234) is again Spin(7)nR
8.

Therefore, there is only one type of orbit of Spin(9, 1) in ∆+
16 which can be represented

with a(1+ e1234). To conclude, the Killing spinor of backgrounds with one supersymmetry

can be chosen, up to a Lorentz rotation for the fluxes, such that

ε = f(1 + e1234) , (3.10)

where f a spacetime function.

3.2 Two spinors

There are two types of N = 2 backgrounds distinguished by the stability subgroup of the

Killing spinors. To see this, we choose the first spinor to be ε1 = a1(1+e1234) with stability

subgroup Spin(7) n R
8. Then we decompose ∆+

16 as in (3.4).

One option is to take the second Killing spinor ε2 ∈ Λ1
7. It turns out that Spin(7)

acts transitively on the sphere in Λ1
7 = Λ1(R7) and so we can take ε2 = a2i(1 − e1234).

The stability subgroup in Spin(9, 1) of both ε1 and ε2 is SU(4) n R
8. Moreover ∆8 =

Λ1
4(C

4)⊕Λ3
4̄
(C4) under SU(4) and so there are no additional singlets. Therefore one class

of N = 2 backgrounds are those for which the Killing spinors are

ε1 = f(1 + e1234) ,

ε2 = g1(1 + e1234) + ig2(1 − e1234) , (3.11)

with stability subgroup SU(4) n R
8.

Next suppose that ε2 ∈ ∆8. Spin(7) acts transitively on the sphere S7 in the spinor

representation ∆8 with stability subgroup G2. Because of this, the second Killing spinor can

be chosen as ε2 = b2Γ
+(e1 +e234). In addition Λ1

7(R
7) is an irreducible representation of G2
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and so there are no additional singlets. Therefore the second Killing spinor can be chosen

as ε2 = a2(1 + e1234) + b2Γ
+(e1 + e234). However in this case, it can be simplified further

using the additional R
8 invariance of 1+e1234. In particular observe that e

a2
b2

Γ−Γ1

b2Γ
+(e1+

e234) = a2(1 + e1234) + b2Γ
+(e1 + e234). Therefore, we can take as a second spinor ε2 =

a2Γ
+(e1 + e234). To summarize, another class of N = 2 backgrounds are those for which

the Killing spinors are

ε1 = f(1 + e1234) ,

ε2 = gΓ+(e1 + e234) , (3.12)

which have stability subgroup G2.

It remains to take the second spinor to be an element of Λ1
7(R

7) ⊕ ∆8. One can again

use the Spin(7) invariance of ε1 to set the component of the second spinor ε2 in ∆8 to be

along the direction Γ+(e1 + e234). As we have mentioned the stability subgroup is G2. In

addition G2 acts transitively on the S6 in Λ1
7(R

7) with stability subgroup SU(3). Because

of this, the component of ε2 in Λ1
7(R

7) can be set along the direction i(1− e1234). However,

since the stability subgroup is SU(3), there are two more additional singlets. As a result,

this case applies to N = 4 backgrounds which we shall investigate below.

3.3 Three spinors

To find the Killing spinors of N = 3 backgrounds, we assume that we have selected the

first two Killing spinors as it has been described above. Therefore, we have to consider two

cases. The first case is when the first two Killing spinors ε1, ε2 are the SU(4)nR
8 invariant

spinors (3.11). The decomposition of ∆+
16 under SU(4) is

∆+
16 = R < a1(1 + e1234) > ⊕R < a2i(1 − e1234) > ⊕Λ2

6(C
4) ⊕ Λ1

4(C
4) ⊕ Λ1

4̄(C
4) . (3.13)

The third spinor ε3 must be linearly independent from both a1(1+e1234) and a2i(1−e1234).

Suppose that ε3 ∈ Λ2
6(C

4). It is known that the generic orbit of SU(4) in Λ2
6(C

4) can be

represented by µ1e12+µ2e34, µ1 6= ±µ2 and has stability subgroup SU(2)×SU(2). However,

there are at least two more real spinors invariant under the SU(2) × SU(2) subgroup of

SU(4) and so this case is suitable for backgrounds with N > 3. However, it is well-known

that there is a special orbit of SU(4) in Λ2
6(C

4)⊕Λ1
4 represented by the real spinor e12−e34

which has enhanced stability subgroup Sp(2). In addition, decomposing ∆8 under Sp(2)

which can be done using sp(2) = so(5), one can find that there are no additional singlets.

To summarize, the Killing spinors of N = 3 backgrounds are

ε1 = f(1 + e1234) ,

ε2 = g1(1 + e1234) + ig2(1 − e1234) ,

ε3 = h1(1 + e1234) + ih2(1 − e1234) + h3(e12 − e34) , (3.14)

with stability subgroup Sp(2) n R
8 in Spin(9, 1). One can continue to investigate whether

there are other cases of N = 3 backgrounds. It turns out that there are no other possibili-

ties.
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3.4 Four spinors

Continuing in the same way as in the above cases, one can show that there are two cases

to consider with four spinors. One case has stability subgroup SU(3) and the other has

stability subgroup (SU(2) × SU(2)) n R
8. A basis in the space of singlets in the former

case is

η1 = 1 + e1234 , η2 = i(1 − e1234) ,

η3 = e15 + e2345 , η4 = i(e15 − e2345) (3.15)

and a basis of singlets in the latter case is

η1 = 1 + e1234 , η2 = i(1 − e1234) ,

η3 = e12 − e34 , η4 = i(e12 + e34) . (3.16)

The Killing spinors of supersymmetric backgrounds are linear combinations of the (con-

stant) spinors in the above bases. However, we shall argue that in the case of heterotic

string, one can always find a gauge such that the Killing spinors are constant and can be

identified with the bases elements above.

3.5 Eight spinors

Similarly, there are two stability subgroups in Spin(9, 1) that leave invariant eight spinors.

One stability subgroup is SU(2) and a basis in the space of singlets is

η1 = 1 + e1234 , η2 = i(1 − e1234) ,

η3 = e12 − e34 , η4 = i(e12 + e34) ,

η5 = e15 + e2345 , η6 = i(e15 − e2345) ,

η7 = e52 + e1345 , η8 = i(e52 − e1345) . (3.17)

The other stability subgroup is R
8 and a basis in the space of singlets is

η1 = 1 + e1234 , η2 = i(1 − e1234) ,

η3 = e12 − e34 , η4 = i(e12 + e34) ,

η5 = e13 + e24 , η6 = i(e13 − e24) ,

η7 = e23 − e14 , η8 = i(e23 + e14) . (3.18)

The Killing spinors of supersymmetric backgrounds with eight supersymmetries are again

linear combinations of the (constant) spinors in the above bases. As in the previous case of

four Killing spinors, it can always be arranged such that the Killing spinors are identified

with the bases elements above.

Some of the results presented in this section are summarized in the table 1.

4. Parallel spinors and forms

4.1 Holonomy, gauge symmetry and Killing spinors

As we have mentioned, the gravitino Killing spinor equation of heterotic strings is a parallel

transport equation for a metric connection with skew-symmetric torsion ∇̂. Therefore, the
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G N = 1 N = 2 N = 3 N = 4 N = 8 N = 16

Spin(7) n R
8 √

- - - - -

SU(4) n R
8 -

√
- - - -

G2 -
√

- - - -

Sp(2) n R
8 - -

√
- - -

(SU(2) × SU(2)) n R
8 - - -

√
- -

SU(3) - - -
√

- -

R
8 - - - -

√
-

SU(2) - - - -
√

-

{1} - - - - -
√

Table 1: N denotes the number of parallel spinors and G their stability subgroup in Spin(9, 1).√
denotes the cases for which the parallel spinors occur. − denotes the cases that do not occur.

main tool to investigate the existence of solutions of such an equation is the holonomy of ∇̂,

hol(∇̂). The bundle of parallel spinors K̂ is spanned by the singlets of the decomposition

of the Majorana-Weyl representation ∆+
16

under hol(∇̂). In particular, we have

0 → K̂ → S → S/K̂ → 0 , (4.1)

where S is the associated bundle of the principal spin bundle with typical fibre ∆+
16

. The

vector bundle K̂ is topologically trivial and so it is equipped with the trivial connection ∂.

In particular, one can introduce a basis (ηi, i = 1, . . . , rank K̂) of constant spinors in K̂.

The Killing spinor equations of the heterotic string are covariant under (local)

Spin(9, 1) gauge transformations as those of IIB supergravity. However, unlike the cases

of IIB and eleven-dimensional supergravities, the Lie algebra spin(9, 1) of the gauge group

of the Killing spinor equations coincides with the Lie algebra that the (super)covariant

derivative ∇̂ takes values in. This in particular implies that the restriction of ∇̂ on the

sections of K̂ can be trivialized with Spin(9, 1) local gauge transformation. As a result,

there is a gauge, up to local Spin(9, 1) transformations, such that the parallel spinors of

∇̂ are constant and so they can be identified with a constant basis ηi. Of course the basis

ηi is defined up to a (constant) general linear transformation GL(rank K̂, R). This trans-

formation can be used to simplify the expressions for the Killing spinors, for more details

see [39]. We remark that in IIB and eleven-dimensional supergravities, there is not always

a choice of a gauge for which the solutions of the gravitino Killing spinor equations are

constant. For example, one can adapt the results of [34] to show that the only maximally

supersymmetric background of IIB and eleven-dimensional supergravities with constant

Killing spinors is locally isometric to Minkowski spacetime.

Given a constant basis ηi of parallel spinors in K̂, the most general Killing spinors can

be written as

εr =
∑

i

friηi , r = 1, . . . , N , i = 1, . . . , rank K , (4.2)
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where f = (fri) is a real constant matrix. In general N < rank K̂ because some parallel

spinors may not solve the dilatino or gaugino Killing spinor equations. The matrix f can

be thought of as the inclusion of the bundle of Killing spinors K in K̂.

To investigate all the supersymmetric backgrounds of the heterotic string, one has to

determine the cases for which N < rank K̂ for N > 1. It is well-known that there are

such backgrounds as for example the group manifolds that have been mentioned in the

introduction. In what follows, we shall only consider the cases for which N = rank K̂.

These are the so called maximally supersymmetric G-backgrounds in the terminology of

[31]. In the first few cases, we shall allow the coefficients f in (4.2) to be spacetime

functions and show that the parallel transport equations imply that f can be taken to be

the identity, up to a local Spin(9, 1) and constant GL(N, R) transformations, in agreement

with the general argument presented above.

We have mentioned in the introduction that there are null and timelike supersymmetric

backgrounds. These can be distinguished by the properties of their Killing spinors (N =

rank K̂). The Killing spinors of null supersymmetric backgrounds satisfy Γ−ε = 0, (see

appendix A for our spinor conventions). Since ε ∈ ∆+
16

, this condition implies that the

Killing spinors are also chiral with respect to the Clifford subalgebra Cliff(R8) of Cliff(R9,1),

where R
8 = R < e1, . . . , e4, e6, . . . , e9 >. There are null supersymmetric backgrounds with

even and odd number of Killing spinors.

The timelike supersymmetric backgrounds admit always even number of Killing spi-

nors. Half of these spinors satisfy the condition Γ−ε = 0 while the other half satisfies

the condition Γ+ε = 0. Therefore the Killing spinors do not have a definite chirally with

respect to the above Cliff(R8) subalgebra.

4.2 Parallel forms

It has been known for some time that an alternative way to characterize the geometry of

supersymmetric heterotic backgrounds is in terms of the spacetime form bilinears of the

parallel spinors, see e.g. [5, 14, 7]. In the heterotic case, a consequence of the Killing spinor

equations is that all the spacetime form bilinears of the parallel spinors are also parallel

with respect to the connection ∇̂. This is because ∇̂ is a connection that takes values in

spin(9, 1) and so preserves the gamma-matrices and the spinor inner product, i.e. ∇̂εr = 0,

r = 1, . . . , N , implies that

∇̂αrs = 0 , r, s = 1, . . . , N , (4.3)

where αrs represents all the form spinor bilinears, see appendix A for the definition of α.

A converse to the above statement has been presented in [40]. In the case of the

heterotic string a stronger statement is valid. In particular, if the forms αrs are spinor

bilinears of some spinors εr and ∇̂αrs = 0, then ∇̂εr = 0. This is because the stability

subgroups of the parallel spinors can also be characterized as those subgroups of Spin(9, 1)

that leave the forms αrs invariant. Therefore, one can use the form spinor bilinears to give

an alternative description of the geometry of spacetime of supersymmetric backgrounds.
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The parallel forms of supersymmetric backgrounds generate a ring under the wedge

product. It turns out that the ring of null supersymmetric backgrounds is nilpotent, i.e. the

wedge product of any two forms in the ring vanishes. In all cases, there is a null parallel

one-form κ = e− and all the rest of the generators of the ring are of the form

α = e− ∧ φ , (4.4)

where (e+, e−, ei) is a light-cone frame adapted to the metric. Although ∇̂α = 0, the form

φ is not parallel with respect to the ∇̂ connection.4 In particular, we have

∇̂Aφi1...ik = 0 , ∇̂AφB1...Bk−1+ = 0 ,

∇̂Aφi1...ik−1− = Ω̂A,
m

−φi1...ik−1m . (4.5)

Nevertheless in many cases it is convenient to use the form φ to describe the geometry of

spacetime.

The timelike supersymmetric backgrounds admit at least three parallel one forms κ =

e−, κ′ = e+ and κ̂ = e1. The N > 2 backgrounds admit more than three parallel one-forms.

The associated ring of parallel forms is not nilpotent. At the end of this section, we give

the generators of the rings of the parallel forms of all the supersymmetric backgrounds.

Some geometric properties of the spacetime follow immediately from (4.3). For ex-

ample, let κ be a one-form parallel spinor bilinear. Then (4.3) implies that κ is parallel,

∇̂κ = 0. The associated vector field X with respect to the spacetime metric is also parallel,

∇̂X = 0. A consequence of this is that

LXg = 0

dκ = iXH , (4.6)

i.e. X is Killing and that the rotation of κ is equal to the particular component of the flux

H. In addition, if H satisfies the Bianchi identity, which it does at the lowest order5 in α′,
then

LXH = diXH + iXdH = diXH = 0 , (4.7)

and so H is also invariant under the one-parameter family of diffeomorphisms generated

by X.

Next suppose that X,Y are ∇̂-parallel vector fields and denote with κX and κY the

associated one-forms. The commutator of such two Killing vector fields is Killing because

L[X,Y ] = LXLY − LY LX . In addition, it is known that i[X,Y ] = LXiY − iY LX and so

i[X,Y ]H = LXiY H = LXdκY = dLXκY = dκ[X,Y ] . (4.8)

Therefore, the commutator [X,Y ] is also parallel with respect ∇̂. However κ[X,Y ] may not

be associated with a one-form parallel spinor bilinear.

4However, it is parallel with respect to another connection which takes values in the compact subalgebra

of the holonomy group of the null supersymmetric backgrounds.
5It is expected that H will remain invariant after all perturbative corrections in α′ are taken into

account provided that the classical background is invariant under the transformations generated by X.

This is because the corrections are polynomials of the Riemann curvature R, F , H and their covariant

derivatives which are invariant under X.
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Another aspect of the form spinor bilinears that arise in the context of supersymmetric

heterotic string backgrounds is whether or not they are invariant under the Killing vectors

of these backgrounds. Let X be a Killing vector associated with a one-form spinor bilinear

κ and α be a k-form spinor bilinear. Using ∇̂α = ∇̂κ = 0, one can show that

(LXα)A1...Ak
= k(−1)k(iXH)B [A1

αA2...Ak]B , (4.9)

where A1, . . . , Ak, B = −,+, i. Therefore LXα = 0, iff the rotation of X, iXH, leaves

invariant the form α. We shall find that the dilatino Killing spinor equation implies such

conditions.

It also turns out that the geometry of the spacetime of supersymmetric backgrounds

can be described using a minimal set of parallel forms. This particularly applies to the

conditions that arise from the gravitino Killing spinor equation. This is similar to the char-

acterization of Kähler manifolds as the Riemannian manifolds that admit a parallel almost

complex structure. The generators of the ring of parallel forms or the rings themselves for

the supersymmetric backgrounds, up to Hodge duality, are summarized in table 4.2 below.

5. N = 1 backgrounds

5.1 Supersymmetry conditions

In section 3, we have shown that the Killing spinor can be chosen as ε = f(1+e1234) and has

stability subgroup Spin(7) n R
8, where f is a real function of the spacetime. Substituting

this into the gravitino Killing spinor equation, we find

∂A log f(1 + e1234) −
1

8
Ω̂A,γδε

γδ
ᾱβ̄Γᾱβ̄1 +

1

4
Ω̂A,ᾱβ̄Γᾱβ̄1 +

1

2
Ω̂A,α

α1

−1

2
Ω̂A,α

αe1234 +
1

2
Ω̂A,+αΓ+αe1234 +

1

2
Ω̂A,+ᾱΓ+ᾱ1 +

1

2
Ω̂A,−+(1 + e1234) = 0 . (5.1)

The above equation can be expanded in the basis (A.9). Setting every component in this

basis to zero, we find the conditions

∂A log f +
1

2
Ω̂A,−+ = 0 , (5.2)

Ω̂A,α
α = 0 , Ω̂A,ᾱβ̄ − 1

2
Ω̂A,γδε

γδ
ᾱβ̄ = 0 , (5.3)

Ω̂A,+ᾱ = Ω̂A,+α = 0 . (5.4)

The components Ω̂A,−α and Ω̂A,−ᾱ are unconstrained.

Similarly, one substitutes ε = f(1 + e1234) into the dilatino Killing spinor equation to

find
(

ΓA∂AΦ − 1

12
ΓABCHABC)(1 + e1234

)

= 0 . (5.5)

Expanding this in the basis (A.9), we get that

∂ᾱΦ +
1

6
Hβ1β2β3

εβ1β2β3
ᾱ − 1

2
Hᾱβ

β − 1

2
H−+ᾱ = 0 , (5.6)
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Supersymmetry Killing Parallel Forms

Vectors

N = 1 Spin(7) n R
8 1 e−, e− ∧ φ

N = 2 SU(4) n R
8 1 e− , e− ∧ χ , e− ∧ ω

N = 2 G2 3 e− , e+ , e1 , ϕ

N = 3 Sp(2) n R
8 1 e− , e− ∧ ωI , e− ∧ ωJ , e− ∧ ωK

N = 4 (SU(2) × SU(2)) n R
8 1 e− ,−e− ∧ (e1 ∧ e6 + e2 ∧ e7)

−e− ∧ (e3 ∧ e8 + e4 ∧ e9)

e− ∧ (e1 + ie6) ∧ (e2 + ie7)

e− ∧ (e3 + ie8) ∧ (e4 + ie9)

N = 4 SU(3) 4 e− , e+ , e1 , e6 , ω̂ , χ̂

N = 8 R
8 1 e− ∧ ψ , ψ ∈ Λev+(R8)

N = 8 SU(2) 6 e− , e+ , e1 , e6 , e2 , e7 ,

− e3 ∧ e8 − e4 ∧ e9 , (e3 + ie8) ∧ (e4 + ie9)

N = 16 {1} 10 eA , A = 0, . . . , 9

Table 2: The first column gives the number of Killing vectors that are constructed from Killing

spinor bilinears of a supersymmetric background. The second column gives a minimal set of

∇̂-parallel forms which characterizes the geometry of the supersymmetric background, where

Λeven+(R
8
) = Λ0(R

8
) ⊕ Λ2(R

8
) ⊕ Λ4+(R

8
) and Λ4+(R

8
) is the space of self-dual four-forms in

R
8
, and

χ = (e1 + ie6) ∧ (e2 + ie7) ∧ (e3 + ie8) ∧ (e4 + ie9) ,

ω = −e1 ∧ e6 − e2 ∧ e7 − e3 ∧ e8 − e4 ∧ e9 , φ = Re χ − 1

2
ω ∧ ω ,

ω̂ = −e2 ∧ e7 − e3 ∧ e8 − e4 ∧ e9 , χ̂ = (e2 + ie7) ∧ (e3 + ie8) ∧ (e4 + ie9) ,

ϕ = Reχ̂ + e6 ∧ ω̂ , ωI = ω ,

ωJ = Re[(e1 + ie6) ∧ (e2 + ie7)] + (e3 + ie8) ∧ (e4 + ie9)] ,

ωK = −Im[(e1 + ie6) ∧ (e2 + ie7) + (e3 + ie8) ∧ (e4 + ie9)] .

∂+Φ = 0 , (5.7)

H+α
α = 0 , − H+ᾱ1ᾱ2

+
1

2
H+β1β2

εβ1β2
ᾱ1ᾱ2

= 0 . (5.8)

The components ∂−Φ and H−ij remain undetermined by the dilatino Killing spinor equa-

tion, where i = α, ᾱ and similarly j.

5.2 The geometry of spacetime

5.2.1 The holonomy of ∇̂ and supersymmetry

The gravitino Killing spinor equation implies that the holonomy of the ∇̂ connection is

contained in Spin(7) n R
8. This may have been expected on general grounds because the

Killing spinor ε is parallel with respect to ∇̂ and so the holonomy of ∇̂ should be contained

in the stability subgroup of the Killing spinor ε in Spin(9, 1).
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One can also see this explicitly in the gauge f = 1. This gauge can be attained by the

spinorial transformation ebΓ05

, which induces a Lorentz gauge transformation on ∇̂ and a

Lorentz rotation on the fluxes. The action of ebΓ05

on the Killing spinor ε is to scale it with

eb. Therefore setting b = − log |f |, the spacetime dependence of the Killing spinor can be

gauged away and so the Killing spinor can be written as ε = 1 + e1234. In this gauge

Ω̂A,+− = 0 , (5.9)

which together with (5.4) imply that all the components of Ω̂A,+B = 0. It is then easy

to see that the remaining components of the connection one-form, Ω̂ = Ω̂AeA, take values

in spin(7) ⊕s R
8. Note however that for generic N = 1 backgrounds, the Levi-Civita

connection does not have Spin(7) n R
8 holonomy.

The converse is also valid. If hol(∇̂) ⊆ Spin(7) n R
8, there is a spinor ε which is

parallel with respect to ∇̂ and so ε satisfies the gravitino Killing spinor equation. Thus the

existence of a solution for the gravitino Killing spinor equation can be entirely characterized

by the holonomy of ∇̂.

To investigate further the geometry of spacetime, it is convenient to introduce the

∇̂-parallel forms associated with the parallel spinor bilinears. It turns out that most of the

fluxes and geometry can be expressed in terms of these bilinears.

5.2.2 Spacetime forms

Using the formulae that we have collected in appendix A, one can find that the non-

vanishing Killing spinor bilinears6 are a one-form

κ = κ(ε, ε) = f2(e0 − e5) , (5.10)

and a five-form

τ = τ(ε, ε) = f2(e0 − e5) ∧ φ , (5.11)

where

φ = Reχ − 1

2
ω ∧ ω , (5.12)

and χ and ω are defined in appendix A, see also table 4.2. It is easy to recognize that φ is

the usual Spin(7)-invariant four-form on eight-dimensional manifolds. The forms ω and χ

are not individually well-defined on the spacetime.

To proceed, we introduce a frame e+, e−, eα, eᾱ, where e− = (1/
√

2) (−e0 + e5), e+ =

(1/
√

2) (e0 + e5), and eα = (1/
√

2) (eα + ieα+5), eᾱ = (1/
√

2) (eα − ieα+5), and (e0, . . . , e9)

is the orthonormal frame in appendix A. The spacetime metric can be rewritten as

ds2 = 2e+e− + 2δαβ̄eαeβ̄ . (5.13)

In this new frame7 κ = f2 e− and τ = f2 e−∧φ. Therefore the ring of form spinor bilinears

under the wedge product is nilpotent, i.e. the wedge product of any two forms vanishes.

6We have normalized the Killing spinor ε with an additional factor of 1/
√

2.
7We have normalized the forms with a further factor of 1/

√
2.
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As we have explained in section 4.2, κ and τ are ∇̂-parallel. Therefore the vector field

X = f2 e+ associated with the one-form κ with respect to the spacetime metric is also

∇̂-parallel, i.e. ∇̂X = 0, where eA(eB) = δA
B and eB is the co-frame. This in turn implies

that X is Killing and dκ = iXH. Consequently, diXH = 0 and so the Bianchi identity,

dH = 0, implies that LXH = 0. The three-form field strength H is invariant under the

isometries generated by X. In addition (5.7) implies that LXΦ = 0 as well. Therefore the

metric and both fluxes H and Φ are invariant under X. Furthermore as we shall explain

in detail in the next section, (5.8) implies that H+AB takes values in spin(7) ⊕s R
8. Using

(4.9), one finds that

LXτ = 0 . (5.14)

Therefore, the parallel vector field X leaves invariant the Spin(7) n R
8-structure of space-

time. It turns out that this is a generic property of all null supersymmetric heterotic

string backgrounds that we investigate. The null parallel vector field preserves the K nR
8-

structure of the spacetime.

5.2.3 The solution of the Killing spinor equations

To further investigate the Killing spinor equations, we decompose the space of two-, three-

and four-forms under Spin(7) as as Λ2(R8) = Λ2
7
⊕ Λ2

21
, Λ3(R8) = Λ3

8
⊕ Λ3

48
, Λ4(R8) =

Λ4
+(R8) ⊕ Λ4

−(R8), Λ4
+ = Λ4

1
⊕ Λ4

7
⊕ Λ4

27
and Λ4

− = Λ4
35

, where

Λ2
7 = {α ∈ Λ2(R8)| ∗ (α ∧ φ) = −3α} , Λ2

21 = {α ∈ Λ2(R8)| ∗ (α ∧ φ) = α}
Λ3

8 = {∗(α ∧ φ)|α ∈ Λ1(R8)} , Λ3
48 = {α ∈ Λ3(R8)|α ∧ φ = 0} ,

Λ4
1 = {r φ| r ∈ R} . (5.15)

The representation Λ2
21

can be identified with the adjoint representation of spin(7), so

spin(7) = so(7) = Λ2
21

. Using the above decompositions, the conditions that arise from the

gravitino Killing spinor equation (5.6)-(5.8) in the gauge f = 1 can be written as

Ω̂A,+B = 0 , Ω̂7

A,ij = 0 , (5.16)

where the projection to the seven-dimensional representation is done in the indices i, j =

1, . . . 4, 6, . . . , 9. In addition, the conditions that arise from the dilatino Killing spinor

equation can be rewritten as

∂iΦ +
1

12
Hjklφ

jkl
i −

1

2
H−+i = 0 , ∂+Φ = 0 , H7

+ij = 0. (5.17)

The conditions (5.16) and (5.17) can be solved to determine most of the components

of the flux in terms of the geometry. In particular, the first equation in (5.16) implies

that κ = e− is parallel and so iXH = dκ = de−. The second equation is equivalent to

∇̂Aφijkl = 0 and so in particular implies that

∇̂−φijkl = 0 ,

∇̂mφijkl = 0 . (5.18)
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These equations can be solved for the fluxes to give

H7

−ij = H−ij −
1

2
H−klφ

kl
ij = − 1

12
φpqr

i∇−φpqrj ,

Hijk = − 1

4!
∇[m1

φm2...m5]ε
m1m2...m5

ijk + θmφmijk , (5.19)

where

θi = − 1

36
∇pφpj1j2j3φ

j1j2j3
i . (5.20)

Observe that θ is analogous to the Lee form of eight-dimensional Riemannian manifolds

with a Spin(7)-structure. To derive the second equation in (5.19), we have use the results

of [24]. In addition the first condition in (5.17) implies that the H8

ijk component of H

which is determined by θ can be expressed in terms of the derivative of the dilaton and

the H+−i = (dκ)−i component of the flux. If H+−i 6= ∂if , then the spacetime is not

conformally balanced.

Therefore the metric and three-form flux of the supersymmetric spacetime can be

written as

ds2 = 2e+e− + δαβ̄eαeβ̄

H = e+ ∧ de− + Ω7

−,ij e− ∧ ei ∧ ej +
1

2
H21

−ije
− ∧ ei ∧ ej

+
1

3!
Hijke

i ∧ ej ∧ ek , (5.21)

where Hijk is given in (5.19). The component H21

−ij of the fluxes is not determined by the

Killing spinor equations.

5.2.4 Local coordinates

One can introduce local coordinates on the spacetime M by adapting a coordinate u along

the null Killing vector field X, X = ∂
∂u

. The spacetime metric can be written as

ds2 = 2U(dv + mIdyI)(du + V dv + nIdyI) + γIJdyIdyJ , (5.22)

where U, V,mI , nI and γIJ are functions of v, yI coordinates, I, J = 1, . . . , 8. All the

components of the metric are independent of u because X is Killing. In addition U = f2.

To see this, we adapt the frame

e− = dv + mIdyI , e+ = U(du + V dv + nIdyI) , ei = ei
JdyJ , (5.23)

where γIJ = δije
i
Ie

j
J . The Killing vector field in this frame is

X = f2e+ =
∂

∂u
, (5.24)

where eB is

e+ = U−1 ∂

∂u
, e− =

∂

∂v
− V

∂

∂u
,
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ei = eJ
i

∂

∂yJ
+ (−ni + V mi)

∂

∂u
− mi

∂

∂v
, (5.25)

ei
Ie

I
j = δi

j, mi = mIe
I
i and ni = nIe

I
i . Using the above expression for the co-frame, the

Killing vector field X can be written as

X = f2e+ = f2U−1 ∂

∂u
=

∂

∂u
. (5.26)

Therefore U = f2. In particular, we can set U = 1 in the gauge f = 1.

A consequence of the torsion free condition for the Levi-Civita connection and Ω̂A,+B =

0 is that

iXH = dm . (5.27)

So using iXH = dκ, one finds that

dκ = dm . (5.28)

As it may have been expected the off-diagonal part of the metric (5.22) proportional to

m, which is responsible for the deviation from Penrose coordinates, is due to the rotation

of the null geodesic congruence generated by κ. In addition (5.27) relates this term to the

presence of non-vanishing H fluxes. Furthermore, the coordinate v of the spacetime can

be specified by applying the Poincaré lemma on the closure relation d(κ − m) = 0.

5.2.5 A deformation family of Spin(7)-structures

The spacetime M of N = 1 supersymmetric heterotic string backgrounds can be interpreted

as a two parameter Lorentzian deformation family8 of an eight-dimensional manifold B with

an Spin(7)-structure. To see this, observe that the metric (5.22) can be rewritten as

ds2 = gabduadub + gIJ(dyI + AI
adua)(dyJ + AJ

b dub) , (5.29)

where

gvu + gIJAI
vA

J
u = U , gvv + gIJAI

vA
J
v = 2UV , guu + gIJAI

uAJ
u = 0

gJIA
J
u = UmI , gJIA

J
v = UnI + UV mI , gIJ = γIJ + 2Un(ImJ) , (5.30)

and gab, gIJ , AI
a depend on all coordinates ua, yI , ((ua) = (u, v)). The components AI

a can

be thought of as the non-linear connection of the family.

The spacetime admits an integrable distribution of co-dimension eight. To see this, we

adapt a frame

E+ , E− , Ei = ẽi
J(dyJ + AJ

b dub) , (5.31)

to the metric (5.29), where E+, E− is a light-cone frame adapted to the two-dimensional

part of the metric, gabduadub = 2E−E+, and δij ẽ
i
I ẽ

j
J = gIJ . Applying the Frobenius

8The family is trivial with respect to one of the two parameters.
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theorem to the one-forms E+, E−, one can easily show that the spacetime is an integrable

foliation of co-dimension eight with leaves the deformed manifold B given by u, v = const.

It remains to determine the geometry of B that gets deformed. It is clear that B is a

Riemannian manifold with metric ds̃2 = gIJdyIdyJ equipped with a three-form H̃ = H|B .

So one can construct a Riemannian connection ˆ̃∇ on B with torsion H̃. In addition B

admits a Spin(7)-invariant form φ̃ = φ|B . However these data are not compatible, i.e. in

general ˆ̃∇φ̃ 6= 0. To see this, observe that

ei = `i
j(E

i + pjE+ + qiE−) (5.32)

for some non-vanishing p and q, det` 6= 0, and similarly for the rest components of the

frame. This in particular implies that the self-dual four form φ in the (Ei, E+, E−) frame

has components in the E+ and E− directions. Taking the covariant derivative of φ, i.e. ∇̂iφ,

one get contributions from ∇̂iE
+ = −Ω̂i

+
jE

j , and similarly from ∇̂iE
−, which can be

identified with the second fundamental form of B with respect to the connection ∇̂. Since

these contributions do not apparently vanish, ∇̂iφ = 0, see (4.5), after restriction to B

does not imply that ˆ̃∇iφ̃ = 0. Therefore B does not have a Spin(7) structure compatible

with the connection ˆ̃∇. Nevertheless, B admits a Spin(7)-structure.

There is though a special case where the Spin(7)-structure of B is compatible with the
ˆ̃∇ connection. This is whenever the rotation of the null ∇̂-parallel vector field vanishes,

dκ = de− = 0, i.e. the metric is written in terms of Penrose coordinates. In this case, the

(e−, e+, ei) and (E−, E+, Ei) frames are related as

e− = E− , e+ − nie
i = E+ , ei = Ei − niE− . (5.33)

Then φ = 1
4!φijkle

i ∧ ej ∧ ek ∧ el can be written as φ = ψ + E− ∧ τ , where ψ = 1
4!φijklE

i ∧
Ej ∧ Ek ∧ El. Thus we have

(∇̂iφ)|B = ˆ̃∇iφ̃ + (∇̂iE
−)|B ∧ τ |B = ˆ̃∇iφ̃ = 0 (5.34)

because ∇iE
− = ∇ie

− = −Ωi,+AEA = 0, since Ω̂A,+B = 0, E+|B = E−|B = 0, and φ

is parallel with respect to ∇̂ along the B directions, see (4.5), where φ̃ = φ|B = ψ|B . In

addition B is conformally balanced. This is because the dilatino Killing spinors equation

(5.17) when restricted on B gives

θ̃i = 2∂iΦ̃ , (5.35)

since the rotation of the vector field vanishes. Eight-dimensional Riemannian manifolds

with a conformally balanced Spin(7)-structure compatible with a connection with skew-

symmetric torsion have been investigated in [24]. Any eight-dimensional Riemannian man-

ifold with a Spin(7)-structure admits a connection with skew-symmetric torsion

H̃ = − ? dφ̃ + ?(θ̃ ∧ φ̃) , (5.36)

where the Lee form can also be written as θ̃ = −1
6 ? (?dφ ∧ φ) and ? is the Hodge duality

operator of B for dvol(B) = ẽ1 ∧ . . . ∧ ẽ4 ∧ ẽ6 ∧ . . . ∧ ẽ9. Note that ẽi = ei|B = Ei|B .

Our form conventions are summarized in appendix A. Of course the torsion is required to

satisfy the (generalized) Bianchi identity for applications to the heterotic string.
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The geometry of B can also be given in terms of G-structures. It is known that there

are four classes of Spin(7)-structures obtained by decomposing ∇̃φ̃ in terms of Spin(7)

representations [41]. These classes can be described in terms of the Lee form [42] as

follows: W0 (dφ̃ = 0), W1 (θ̃ = 0), W2 (dφ̃ = 6
7 θ̃ ∧ φ̃) and W = W1 ⊕ W2. The only

restriction that we find on the Spin(7)-structure of B arising from supersymmetry is that

it is conformally balanced, i.e. θ̃ = 2dΦ̃. These geometries are in the same conformal

class as those of the W1 Spin(7)-structure. To see this, observe that under the conformal

transformation ds̃2
Ω = e2Ωds̃2, the four-forms changes as φ̃Ω = e4Ωφ̃. Then the Lee form

of (ds̃2
Ω, φΩ) can be written in terms of the Lee form of (ds̃2, φ̃) as θ̃Ω = θ̃ + 14

3 dΩ. Thus

θ̃Ω = 0 for Ω = −3
7Φ̃ and so (ds̃2

Ω, φ̃Ω) , is in the W1 class.

5.3 Field equations

It is straightforward to derive the field equations that follow as the integrability conditions

of the Killing spinor equations. In this way, we find the minimal set of field equations that

need to be solved in addition to solving the Killing spinor equations. For the case at hand,

we find that the integrability conditions of the Killing spinor equations give

E++ = E+α = 0 ,

E−+ = −1

2
e2ΦLH−+ ,

E−α = −1

2
e2ΦLH−α +

1

2
BH−αγ

γ − 1

6
εα

γ̄1γ̄2γ̄3BH−γ̄1γ̄2γ̄3
,

Eαβ = − 1

12
εα

γ̄1γ̄2γ̄3BHβγ̄1γ̄2γ̄3
− 1

12
εβ

γ̄1γ̄2γ̄3BHαγ̄1γ̄2γ̄3
,

Eαβ̄ = −1

2
BHαβ̄γ

γ − 1

12
εα

γ̄1γ̄2γ̄3BHβ̄γ̄1γ̄2γ̄3
− 1

12
εβ̄

γ1γ2γ3BHαγ1γ2γ3
,

LH+α = 0 ,

e2ΦLHα1α2
= −1

2
εα1α2

β̄1β̄2BH−+β̄1β̄2
,

e2ΦLHαβ̄ = −BH−+αβ̄ +
1

6
εα

γ̄1γ̄2γ̄3BHβ̄γ̄1γ̄2γ̄3
− 1

6
εβ̄

γ1γ2γ3BHαγ1γ2γ3
,

LF+ = 0 ,

e2ΦLFα = −BF−+α + BFαγ
γ − 1

3
εα

γ̄1γ̄2γ̄3BFγ̄1γ̄2γ̄3
,

LΦ =
1

2
e2ΦLH−+ +

1

4
BHγ

γ
δ
δ +

1

24
εγ̄1···γ̄4BHγ̄1···γ̄4

+
1

24
εγ1···γ4BHγ1···γ4

. (5.37)

In addition, the Bianchi identities satisfy

BF+α
α = 0 , BF+α1α2

=
1

2
εα1α2

β̄1β̄2BF+β̄1β̄2
(5.38)

and

BH+α1α2α3
= BH+α1α2β̄ = BH−+γ

γ = 0 , BH−+α1α2
=

1

2
εα1α2

β̄1β̄2BH−+β̄1β̄2
,

BHα1α2γ
γ =

1

2
εα1α2

β̄1β̄2BHβ̄1β̄2γ
γ , εγ̄1···γ̄4BHγ̄1···γ̄4

− εγ1···γ4BHγ1···γ4
= 0 . (5.39)

It is significant to see that the Bianchi identities are restricted. This effects the consistency

of the theory when the heterotic anomaly and the higher order corrections are considered.
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However, if one works at the lowest order, one can impose the Bianchi identities, BH =

BF = 0. In such a case, all field equations are implied provided that in addition one

imposes9 E−− = 0, LH−A = 0 and LF− = 0.

6. N = 2 backgrounds with SU(4) n R8 invariant spinors

6.1 Supersymmetry conditions

We have shown in section 3 that the SU(4) n R
8-invariant Killing spinors can be written

as

ε1 = f(1 + e1234) ,

ε2 = g1(1 + e1234) + ig2(1 − e1234) . (6.1)

The Killing spinors equations for the first spinor have been investigated in the previous

section. The gravitino Killing spinor equation for the second spinor can be written as

g−1
2 g1∂A log(g1f

−1)(1 + e1234) + i∂A log g2(1 − e1234) + i∇̂A(1 − e1234) = 0 . (6.2)

This equation can be expanded in the basis given in (A.9). In particular, the components

along the 1 and e1234 directions are

g−1
2 g1∂A log(g1f

−1) + i∂A log g2 +
i

2
Ω̂A,α

α +
i

2
Ω̂A,−+ = 0 ,

g−1
2 g1∂A log(g1f

−1) − i∂A log g2 +
i

2
Ω̂A,α

α − i

2
Ω̂A,−+ = 0 . (6.3)

These in turn imply that

∂A log(g1f
−1) = 0 ,

∂A log(g2f
−1) = 0 . (6.4)

To derive the latter, we have also used the equation that we have obtained for f in the

N = 1 case. Since the Killing spinors are specified up to a constant scale, they can be

written as

ε1 = f(1 + e1234)

ε2 = f [cos ϕ(1 + e1234) + i sin ϕ(1 − e1234)] , (6.5)

where ϕ is a constant angle. The spinors ε1 and ε2 must be linearly independent and so the

angle ϕ should satisfy sinϕ 6= 0. The remaining conditions for the second Killing spinor are

as those we have derived for the N = 1 case with the difference that the terms proportional

to the Levi-Civita tensor epsilon have an additional relative minus sign. Combining, the

conditions we have derived for the ε1 Killing spinors with those of the ε2 Killing spinors, we

find that the independent conditions associated with the gravitino Killing spinor equation

9The set of field equations that should be imposed in addition to the Killing spinor equations is not

uniquely defined.
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are

∂A log f +
1

2
Ω̂A,−+ = 0 , (6.6)

Ω̂A,ᾱβ̄ = Ω̂A,α
α = 0 , (6.7)

Ω̂A,+ᾱ = Ω̂A,+α = 0 . (6.8)

It remains to find the conditions that arise from the dilatino Killing spinor equation. We

have already computed the dilatino Killing spinor equation on the spinor ε1 in the previous

section. So it remains to find the conditions for ε2. It is straightforward to observe using

the results we have derived for the dilatino Killing spinor equation of ε1 that it suffices

to compute the dilatino Killing spinor equation on 1 − e1234. In turn the conditions that

arise can be easily read from those on ε1. The only difference is a relative minus sign for

the terms proportional to the Levi-Civita tensor epsilon. Combining the conditions for the

dilatino Killing spinor equation for both ε1 and ε2 spinors, we find that

∂ᾱΦ − 1

2
Hᾱβ

β − 1

2
H−+ᾱ = 0 , (6.9)

Hβ̄1β̄2β̄3
= 0 , (6.10)

∂+Φ = 0 , (6.11)

H+α
α = 0 , H+ᾱ1ᾱ2

= 0 . (6.12)

This concludes the analysis of the Killing spinor equations.

6.2 Geometry

6.2.1 Holonomy of ∇̂ connection and supersymmetry

Applying the general arguments presented in 4.1 to this case, one expects that the gravitino

Killing spinor equation implies that the holonomy of the ∇̂ connection is contained in

SU(4) n R
8. This can be explicitly seen in the gauge f = 1. This gauge can be attained

by using the Spin(9, 1) gauge transformation ebΓ05

for b = log |f | as in the Spin(7) n R
8

case that we have already investigated. In the gauge f = 1, one has

Ω̂A,+− = 0 , (6.13)

which together with (6.8) imply that all the components of Ω̂A,+B = 0. It is then easy to

see that the remaining components of the connection one-form, Ω̂ = Ω̂AeA, take values in

su(4) ⊕s R
8. In the presence of fluxes, the Levi-Civita connection of these backgrounds

does not have SU(4) n R
8 holonomy.

We have seen above that we can choose f = 1. In addition, the angle that the Killing

spinors (6.5) depend on can be eliminated with a constant GL(2, R) transformation. So

the Killing spinors can be written as ε1 = 1 + e1234 and ε2 = i(1 − e1234). This is in

agreement with the general arguments we have presented in section 4.1 that in the heterotic

supergravity the Killing spinors can always be chosen to be constant.
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A converse statement is also valid. If hol(∇̂) ⊆ SU(4) n R
8, there are spinors ε1, ε2

which are parallel with respect to ∇̂ and so they satisfy the gravitino Killing spinor equa-

tion. Thus the existence of a solution for the gravitino Killing spinor equation can be

entirely characterized by the holonomy of ∇̂.

To investigate further the geometry of spacetime, it is convenient to introduce the

∇̂-parallel forms associated with the parallel spinor bilinears. It turns out that most of the

fluxes and geometry can be expressed in terms of these bilinears.

6.2.2 Geometry and spacetime forms bilinears

The ∇̂-parallel forms associated with the spinor pair (ε1, ε1) have already been computed

and can be found in the previous section. To compute the forms associated with the spinor

pairs (ε2, ε2) and (ε1, ε2), we write the metric as in (5.13), i.e.

ds2 = 2e+e− + 2δαβ̄eαeβ̄ . (6.14)

Then, after a normalization of the spinors (6.5) with 1/
√

2, we find the one-forms10

κ(ε2, ε2) = −f2e−

κ(ε1, ε2) = −f2 cos ϕ e− , (6.15)

a three-form

ξ(ε1, ε2) = −f2 sin ϕ e− ∧ ω , (6.16)

and two five-forms

τ(ε2, ε2) = −f2 e− ∧ [Re (e2iϕχ) − 1

2
ω ∧ ω]

τ(ε1, ε2) = −f2 e− ∧ Re [eiϕ(χ − 1

2
ω ∧ ω)] , (6.17)

where ω = −iδαβ̄eα ∧ eβ̄ and χ = 4e1 ∧ e2 ∧ e3 ∧ e4. The above forms can be simplified in

the gauge f = 1, cos ϕ = 0, sinϕ = 1. It can be easily seen that if ε1 and ε2 are linearly

independent, i.e. sin ϕ 6= 0, the ring of spacetime form bilinears is generated by κ = f2e−,

ξ = κ ∧ ω, τ1 = κ ∧ ω ∧ ω and τ2 = κ ∧ χ. This ring is nilpotent as in the Spin(7) n R
8

case and

∇̂κ = ∇̂ξ = ∇̂τ1 = ∇̂τ2 = 0 , (6.18)

i.e. κ, ξ, τ1 and τ2 are parallel with respect to the connection ∇̂. As we have already

mentioned, the condition ∇̂κ = 0 implies that the one-form κ is associated to a null Killing

vector field X and dκ − iXH = 0. The condition (6.12) which arises from the dilatino

Killing spinor equation gives that the two-form iXH takes values in su(4) ⊕s R
8. This in

turn implies that X preserves the SU(4) n R
8 structure, i.e.

LXξ = 0 , LXτ1 = 0 , LXτ2 = 0 . (6.19)

In addition (6.11) implies that the dilaton is invariant under the diffeomorphisms generated

by X.

10We have made an additional normalization of the spinor bilinears with a factor of
√

2.
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6.2.3 Solution of the Killing spinor equations

The conditions arising from the parallel transport equation imply that ∇̂ has holonomy

contained in SU(4) n R
8. The decomposition of the fluxes in SU(4) n R

8 representations

is manifest in this case. Nevertheless observe that under SU(4) the space of two-forms

decomposes as Λ2(R8)⊗C = Λ2,0
6

⊕Λ0,2
6

⊕Λ1,1
1

⊕Λ1,1
15

and the space of three-forms decomposes

as Λ3(R8) ⊗ C = Λ3,0
4

⊕ Λ0,3
4

⊕ Λ2,1
20

⊕ Λ1,2
20

⊕ Λ2,1
4

⊕ Λ1,2
4

. Using these, in the gauge f = 1,

the conditions that arise from gravitino Killing spinor equations can be written as

Ω̂A,+B = 0 , Ω̂2,0
A,ij = Ω̂0,2

A,ij = 0 , Ω̂1

A,ij = 0 (6.20)

and, similarly, the conditions that arise from the dilatino Killing spinor equations can be

written as

∂+Φ = 0 , 2∂iΦ − θi − H−+i = 0 , H3,0
ijk = H0,3

ijk = 0 ,

H1

+ij = 0 , H2,0
+ij = H0,2

+ij = 0 , (6.21)

where the restriction to representations of SU(4) is referred to the i, j, k indices, θ is the

Lee form

θi = −∇kωkjI
j
i , (6.22)

and the endomorphism I is defined by ωij = gikI
k
j . To rewrite the conditions that arise

from the dilatino Killing spinor equation in terms of the Lee form, we have used ∇̂iωjk = 0.

The conditions (6.20) and (6.21) can be solved to express the fluxes in terms of the

geometry. As we have mentioned already, the first condition in (6.20) implies that iXH =

dκ. The remaining conditions imply that ∇̂Aωij = 0 and ∇̂Aχijkl = 0. The former

condition implies that

∇̂−ωij = 0 , ∇̂iωjk = 0 . (6.23)

These two equations can be solved using, H3,0
ijk = H0,3

ijk = 0, to give

H−ij − H−klI
k
iI

l
j = −2Im

i∇−ωmj ,

Hijk = −3Im
[i(∇jωk]m + ∇|m|ωjk] −∇kωj]m) . (6.24)

In addition ∇̂−χ = 0 gives

H−α
α =

1

8 · 4! χ̄
ijkl∇−χijkl . (6.25)

Therefore all the fluxes apart from H15

−ij are determined in terms of the geometry and

the form Killing spinor bilinears. Of course the remaining conditions impose additional

restrictions on the metric and torsion. In particular, the component of H in Λ2,1
4

is related

to the Lee form θ and so to the derivative of the dilaton.

Therefore, the metric and torsion can be written as

ds2 = 2e−e+ + δije
iej ,

H = e+ ∧ dκ − 1

2
Im

i∇−ωmj e− ∧ ei ∧ ej − 1

64 · 4!Im(χ̄klmn∇−χklmn)ωij e− ∧ ei ∧ ej

+
1

2
H15

−ij e− ∧ ei ∧ ei +
1

3!
Hijke

i ∧ ej ∧ ek , (6.26)

where Hijk is given in the second equation of (6.24) and dκ takes values in su(4) ⊕s R
8.
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6.2.4 Local coordinates, distributions and a deformation family

Using similar arguments to those we have presented for the Spin(7) n R
8 case and intro-

ducing coordinates along the null Killing vector X = ∂
∂u

, we can write the spacetime metric

in the gauge f = 1 as

ds2 = 2(dv + mIdyI)(du + V dv + nIdyI) + γIJdyIdyJ , (6.27)

where all the components are functions of v, yI and iXH = de− = dm. In addition the

second equation in (6.12) implies that dm takes values in su(4) ⊕s R
8. The coordinate v

can also be introduced as in the Spin(7) n R
8 case. One can adapt a frame to the above

metric as in (5.23).

Another aspect of the geometry of the spacetime is that it admits two integrable

distributions of codimension five. These are spanned by the the one forms (e−, eα) and

(e−, eᾱ). This can be seen by using the conditions that arise from the gravitino and

dilatino Killing spinor equations. This implies that the spacetime admits a “Lorentzian”

holomorphic structure. In fact, most of the conditions that arise from the dilatino Killing

spinor equation are implied by the integrability of these distributions.

As in the case of a Spin(7)nR
8-invariant spinor, the spacetime can be thought of as a

two parameter deformation family of an eight-dimensional manifold B. The metric (6.27)

can be written as the metric on the family by introducing a non-linear connection A whose

components are related to m and n as in (5.30). It remains to investigate the geometry of

B. We adapt a frame EA to the metric of the family as in (5.31) and define the spacetime

metric ds̃2 = ds2|B , H̃ = H|B , ω̃ = ω|B and χ̃ = χ|B on B. However, as in the Spin(7)

case, the forms ω̃ and χ̃ are not always parallel with respect to the connection ˆ̃∇ of B with

torsion H̃. Therefore although B has an SU(4)-structure, it is not compatible with the

connection ˆ̃∇.

There is a special case where the SU(4)-structure of B is compatible with the connec-

tion ˆ̃∇. This appears whenever the rotation of the the null parallel vector field X vanishes,

i.e. when dκ = de− = 0. Using the relation (5.33) between the frames (e−, e+, ei) and

(E−, E+, Ei), and arguments similar to those of the Spin(7) case, one can show that B is

a conformally balanced KT manifold equipped with a compatible SU(4) structure, i.e. B

is complex,11 ω̃ and χ̃ define an SU(4)-structure and they are parallel with respect to ˆ̃∇,

i.e. ˆ̃∇ω̃ = 0 and ˆ̃∇χ̃ = 0, and that

θ̃ = 2dΦ̃ , (6.28)

where θ̃ = − ? (?dω̃ ∧ ω̃) is the Lee form of B and ? is the Hodge duality operator on

B associated with the volume form dvol(B) = ẽ1 ∧ . . . ∧ ẽ4 ∧ ẽ6 ∧ . . . ∧ ẽ9. Note that

ẽi = ei|B = Ei|B . One can show that B is a complex submanifold of the Lorentzian holo-

morphic manifold M by using the integrable distributions (e−, eα) and (e−, eᾱ) mentioned

11Note that there are two-dimensional sigma models with extended world-volume supersymmetry and

target spaces which are almost complex manifolds [30].
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above. It turns out that all 2n-dimensional manifolds with an SU(n)-structure and skew-

symmetric Nijenhuis tensor admit a compatible connection with skew-symmetric torsion.

In particular, the torsion of the eight-dimensional manifold B is given as

H̃ = −iĨdω̃ = ?(dω̃ ∧ ω̃) − 1

2
? (θ̃ ∧ ω̃ ∧ ω̃) . (6.29)

Examples of such manifolds have been given in [5, 15, 17, 16]. Of course for applications

to the heterotic string one has to impose the (generalized) Bianchi identity for H.

The geometry of B can also be described using G-structures. The SU(4)-structures

on an eight-dimensional manifold can be found by decomposing ∇̃ω̃ and ∇̃χ̃ in irreducible

SU(4) representations. In the decomposition of ∇̃ω̃ and ∇̃χ̃ five irreducible SU(4) rep-

resentations appear labelled by W1, . . . ,W5, so there are 25 SU(4)-structures. One can

also recover these representations in the decomposition of dω̃ and dχ̃. In particular, one

can show that dω̃3,0 and dχ3,2 determine ∇̃αω̃βγ and correspond to the W1 and W2 classes

respectively. The traceless part of dω̃2,1 is associated with the W3 class and determines

the traceless part of of ∇ᾱω̃βγ . Furthermore the trace part of dω̃2,1 and the trace part

of dχ4,1 determine the trace parts of ∇̃ᾱω̃βγ and ∇̃ᾱχ̃β1...β4
, respectively, and are associ-

ated with the W4 and W5 classes. The classes W4 and W5 are characterized by the Lee

forms θ̃ω̃ and θ̃Reχ̃ of ω̃ and Re(χ̃), respectively. The Lee form θ̃ω̃ has been given below

(6.28), θ̃ω̃ = θ̃, and the Lee form of Reχ̃ is defined as θ̃Reχ̃ = −1
4 ? (?dReχ̃ ∧ Reχ̃). The

remaining components of ∇̃ω̃ and ∇̃χ̃ vanish. The above is a generalization of the results

of [43] for the SU(3) case, see also [44]. The further generalization to all SU(n)-structures

is straightforward. Returning to the geometry of the deformed manifold B, since B is

complex, W1 = W2 = 0. In addition, one can show that

θ̃ω̃ = θ̃Reχ̃ = 2dΦ̃ . (6.30)

This condition is reminiscent to a condition found in [11] in the context of R
3,1 × X6

heterotic string backgrounds, where X6 has an SU(3)-structure.

6.3 Field equations

As was explained for the N = 1 case, it is straightforward to derive the field equations that

are implied from the integrability conditions of the Killing spinor equations. In particular,

we find for the case with SU(4) n R
8 invariant spinors that

E++ = E+α = Eαβ = 0 ,

E−+ = −1

2
e2ΦLH−+ ,

E−α = −1

2
e2ΦLH−α +

1

2
BH−αγ

γ ,

Eαβ̄ = −1

2
BHαβ̄γ

γ ,

LH+α = LHα1α2
= 0 ,

e2ΦLHαβ̄ = −BH−+αβ̄ ,

LF+ = 0 ,

e2ΦLFα = −BF−+α + BFαγ
γ ,
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LΦ =
1

2
e2ΦLH−+ +

1

4
BHγ

γ
δ
δ . (6.31)

In addition, the Bianchi identities satisfy

BF+α
α = BF+α1α2

= BFα1α2α3
= 0 , (6.32)

and

BH−α1α2α3
= BH+α1α2α3

= BH+α1α2β̄ = BH−+α1α2
= BH−+γ

γ = 0 ,

BHα1α2α3α4
= BHα1α2α3β̄ = BHα1α2β̄1β̄2

= 0 . (6.33)

As can be seen from the conditions above, if we choose to impose the Bianchi identities

BF = BH = 0, the only field equations that remain to be solved are E−− = 0, LH−A = 0

and LF− = 0.

7. N = 2 with G2 invariant spinors

7.1 Supersymmetry conditions

The two Killing spinors can be chosen as, see section 3,

ε1 = f(1 + e1234) , ε2 = g(e15 + e2345) . (7.1)

We have already derived the conditions required for ε1 to be a Killing spinor when we

investigated the backgrounds with one supersymmetry. Therefore it remains to derive the

conditions for ε2 to be a Killing spinor. After some computation, the gravitino Killing

spinor equation gives

Ω̂A,−1 = 0 , Ω̂A,−n̄ = 0 , (7.2)

∂A log g − 1

2
Ω̂A,11̄ +

1

2
Ω̂A,n

n − 1

2
Ω̂A,−+ = 0 , (7.3)

Ω̂A,n̄1 −
1

2
Ω̂A,pmεpm

n̄ = 0 , (7.4)

∂A log g +
1

2
Ω̂A,11̄ −

1

2
Ω̂A,n

n − 1

2
Ω̂A,−+ = 0 , (7.5)

where m,n, p, q, . . . = 2, 3, 4 and εmnp = ε1mnp. In addition, the dilatino Killing spinor

equation gives

2∂−Φ + H−11̄ − H−n
n = 0 , (7.6)

2∂−Φ − H−11̄ + H−n
n = 0 , (7.7)

2H−1m̄ + H−npε
np

m̄ = 0 , (7.8)

−2∂1Φ + H1n
n − H−+1 −

1

3
Hnpmεnpm = 0 , (7.9)

∂n̄Φ +
1

2
H11̄n̄ − 1

2
Hn̄p

p +
1

2
H−+n̄ − 1

2
Hpm1̄ε

pm
n̄ = 0 . (7.10)
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Comparing the above equations with those derived for the ε1 Killing spinor, we find that

the parallel transport equation gives

∂A log f +
1

2
Ω̂A,−+ = 0 , (7.11)

∂A log fg = 0 , (7.12)

Ω̂A,1
1 = 0 , (7.13)

Ω̂A,n
n = 0 , (7.14)

Ω̂A,+α = Ω̂A,−α = 0 , α, β = 1, 2, 3, 4 , (7.15)

Ω̂A,ᾱβ̄ =
1

2
Ω̂A,γδε

γδ
ᾱβ̄ , (7.16)

Ω̂A,1n̄ = −Ω̂A,1̄n̄ , (7.17)

and the dilatino Killing spinor equation gives

∂+Φ = ∂−Φ = (∂1 + ∂1̄)Φ = 0 , (7.18)

∂1̄Φ = − 1

12
Hn̄p̄m̄εn̄p̄m̄ +

1

12
Hnpmεnpm , (7.19)

∂n̄Φ = −1

2
Hn̄

p
p +

1

4
H1̄pmεpm

n̄ − 1

4
H1pmεpm

n̄ , (7.20)

H+α
α = 0 , (7.21)

H+ᾱβ̄ =
1

2
H+γδε

γδ
ᾱβ̄ , (7.22)

H−11̄ = H−n
n , (7.23)

H−1n̄ = −1

2
H−pmεpm

n̄ , (7.24)

H−+1̄ = H1̄
n

n − 1

6
Hnpmεnpm − 1

6
Hn̄p̄m̄εn̄p̄m̄ , (7.25)

H−+n̄ =
1

2
H1pmεpm

n̄ +
1

2
H1̄pmεpm

n̄ − Hn̄11̄ . (7.26)

This concludes the analysis of the Killing spinor equations. In the remainder of the section,

we shall investigate the geometry of the backgrounds with G2 invariant spinors.

7.1.1 Holonomy of ∇̂ connection

The gravitino Killing spinor equation implies that the holonomy of the connection ∇̂ is

contained in G2, which is the stability subgroup of the spinors (7.1) in Spin(9, 1). One

can also see this explicitly. This is easily done in the gauge f = 1. As in the previous

cases we have already investigated, this gauge can be attained by the Spin(9, 1) gauge

transformation ebΓ05

for b = log |f |. Then (7.12) implies that g is also constant and so it

can be chosen as g = 1. In the gauge f = g = 1, one has

Ω̂A,+− = 0 , (7.27)
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which together with (7.15) imply that all the components of Ω̂A,+B = 0. It is then easy

to see that (7.12)-(7.17) imply that the remaining components of the connection one-form,

Ω̂ = Ω̂AeA, take values in g2. The Levi-Civita connection does not have G2 holonomy.

The analysis of the geometry of supersymmetric backgrounds with G2 invariant spinors

simplifies in the gauge f = g = 1.

Conversely, if the connection ∇̂ has holonomy contained in G2, then there are spinors

ε1 = 1 + e1234 and ε2 = (e15 + e2345), up to a Spin(9, 1) gauge transformation, which

are parallel with respect to ∇̂. Therefore the holonomy of ∇̂ completely characterizes the

solution of the gravitino Killing spinor equation.

7.1.2 Spacetime form bilinears

To proceed further in the investigation of the geometry, we compute the spacetime forms

associated with the Killing spinor bilinears. The spacetime forms of ε1 have already been

described in the previous sections. It remains to compute the forms associated with the

spinor pairs (ε2, ε2) and (ε1, ε2). In particular after an additional normalization of the

spinors, we find the one-forms

κ(ε1, ε2) = −e1 , κ(ε2, ε2) = e0 + e5 , (7.28)

the three-form

ξ(ε1, ε2) = Reχ̂ + e6 ∧ ω̂ − e0 ∧ e1 ∧ e5 , (7.29)

and the five-forms

τ(ε1, ε2) = −Reχ̂ ∧ e0 ∧ e5 + Imχ̂ ∧ e1 ∧ e6 +
1

2
e1 ∧ ω̂ ∧ ω̂ − ω̂ ∧ e0 ∧ e5 ∧ e6

τ(ε2, ε2) = −(e0 + e5) ∧ [e1 ∧ Reχ̂ + e6 ∧ Imχ̂ +
1

2
ω̂ ∧ ω̂ + ω̂ ∧ e1 ∧ e6] , (7.30)

in the gauge f = g = 1. Unlike the previous cases we have investigated, the ring of

invariant forms is not nilpotent. It is generated by the one-forms κ = e−, κ′ = e+ and

κ̂ = e1 = 1√
2
(e1 + e1̄), the G2 invariant form

ϕ = Reχ̂ + e6 ∧ ω̂ , (7.31)

and its dual ?ϕ, where the Hodge operator is taken with respect to the volume form

e2 ∧ e3 ∧ e4 ∧ e6 ∧ e7 ∧ e8 ∧ e9.

The one-forms κ = e−, κ′ = e+ and κ̂ = e1 = 1√
2
(e1 + e1̄), in the gauge f = g = 1, are

associated with the Killing vector fields X = e+, Y = e− and Z = e1, respectively. This

follows from the conditions Ω̂A,+B = Ω̂A,−B = Ω̂A,1B +Ω̂A,1̄B = 0 which summarize (7.11),

(7.15) and (7.17), in the gauge f = g = 1, and the skew-symmetry of the torsion H. The

commutators of these Killing vector fields are

[X,Y ] = −HA
+−eA

[X,Z] = −HA
+1eA
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[Y,Z] = −HA
−1eA . (7.32)

The components of the torsion which appear in (7.32) are not required to vanish by the

Killing spinor equations. So the above commutators do not vanish and therefore the Killing

vector fields do not necessarily commute. As we have shown in 4.2, if two vector fields

X,Y are ∇̂-parallel their commutator [X,Y ] is ∇̂-parallel as well. So if the commutators

of X,Y,Z are independent vector fields, then the spacetime admits up to six parallel vector

fields not counting the further commutators that one can construct. So there is a large class

of geometries that can occur ranging from a spacetime with three commuting Killing vector

fields X,Y,Z to a spacetime that is a Lorentzian Lie group of dimension ten equipped with

a left-invariant metric g and a left-invariant closed three form H. We shall not attempt to

investigate the full range of possibilities. Instead, we shall focus on the case for which the

vector fields X, Y and Z span a Lie algebra under the commutators (7.32).

7.1.3 Backgrounds with three isometries and supersymmetry conditions

Let h be the Lie algebra spanned by X,Y and Z. Then [h, h] ⊂ h implies that

H−+i = H−1i = H+1i = 0 , i, j, k, l = 2, 3, 4, 6, 7, 8, 9 . (7.33)

Therefore the structure constants of the Lie algebra are given by the H−+1 component of

the torsion. Since H is a three-form, h can be either isomorphic to u(1) ⊕ u(1) ⊕ u(1), if

H−+1 = 0, or isomorphic to sl(2, R), if H−+1 6= 0. The analysis can be done for both cases

simultaneously.

First consider the consequences of (7.33) on the gravitino Killing spinor equation. It

is straightforward to find that (7.11)-(7.17) can be rewritten as

Ω̂A,aB = 0 , Ω̂7

A,ij = 0 , a = −,+, 1 , (7.34)

where we have used the decomposition of Λ2(R7) = Λ2
7
⊕ Λ2

14
under G2,

Λ2
7

= {?(?ϕ ∧ α)|α ∈ Λ1(R7)}
Λ2

14 = {α ∈ Λ2(R7)| ? (ϕ ∧ α) = −α} (7.35)

and Λ2
14

can be identified with the Lie algebra g2 of G2. Similarly, using (7.33), the

conditions implied by the dilatino Killing spinor equation can be rewritten as

∂+Φ = ∂−Φ = ∂1Φ = 0 ,

iXH7

ij = iY H7

ij = iZH7

ij = 0 ,

∂iΦ +
1

12
Hjkl ? ϕjkl

i = 0 ,

H−+1 +
1

6
Hijkϕ

ijk = 0 . (7.36)

The second equation in (7.36) implies that (iXH)ij, (iY H)ij and (iZH)ij take values in g2.

This together with (7.33) imply that X,Y and Z leave invariant the forms ϕ and its dual

?ϕ, i.e.

LXϕ = LY ϕ = LZϕ = 0 , (7.37)
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and similarly for ?ϕ. The last equation in (7.36) implies that the structure constants of h

can be identified with the singlet of H under the G2 decomposition Λ3(R7) = Λ3
1
⊕Λ3

7
⊕Λ3

27
,

where

Λ3
1 = {r ϕ| r ∈ R} ,

Λ3
7

= {?(ϕ ∧ α)|α ∈ Λ1(R7)} ,

Λ3
27

= {α ∈ Λ3(R7)|α ∧ ϕ = 0, α ∧ ?ϕ = 0} = {s ∈ S2(R7)| tr(s) = 0} . (7.38)

In addition the seven-dimensional component of H in the above decomposition is identified

with the exterior derivative of the dilaton.

7.1.4 The solution of the Killing spinor equations

The space of supersymmetric backgrounds with G2 invariant spinors is (locally) a principal

bundle P equipped with a connection λ. To see this, we again assume that the algebra

h spanned by the vector fields12 X,Y and Z closes under Lie brackets and consider a Lie

group H with Lie algebra h. Then the spacetime M = P (H, B, π), where the base space

B is the space of orbits of H in M and π is the projection of P onto B. It remains to

determine the connection λ. This is identified with the components of the frame e along

the X,Y and Z directions, i.e.

λa = ea . (7.39)

One can immediately see that λ satisfies the requirements of a connection, i.e. λa(Xb) =

ea(Xb) = δa
b where {Xb, b = +,−1} = {X,Y,Z}, and LXb

λa = Ha
bcλ

c, where Habc

are interpreted as the structure constants of h. The latter is the infinitesimal expression

of the requirement that R∗
gλ = Adg−1λ, g ∈ H, of a principal bundle connection, see

e.g. [45]. Then the tangent bundle decomposes into the vertical and horizonal subspaces,

TM = TP = T vP ⊕ T hP , where T vP is spanned by the vector field X,Y and Z and T hP

is (locally) spanned by the dual vector fields of the ei components of the frame because

λa(ei) = gMNea
MeiN = 0.

To determine the Cartan structure equations for this connection, we use the conditions

(7.36) to write (7.34) as

Ωa,bc −
1

2
Habc = 0 , Ωi,ab = 0 , Ωa,bi = 0 , Ω7

i,aj = 0 , Ω(i,j)a = 0 ,

Ω7

a,ij = 0 , Ω̂7

k,ij = 0 , (7.40)

where the restriction to the seven-dimensional representation is referred to the i, j indices.

These in turn give rise to the torsion free conditions

dea + Ωb,
a
ce

b ∧ ec + Ωi,
a
je

i ∧ ej = 0 ,

dei + Ωj,
i
ke

j ∧ ek + Ωa,
i
je

a ∧ ej + Ωj,
i
ae

j ∧ ea = 0 . (7.41)

The first torsion free condition rewritten in terms of H can be interpreted as the Cartan

structure equation for the connection λ. In particular, we have

dλa − 1

2
Ha

bcλ
b ∧ λc − 1

2
Ha

ije
i ∧ ej = 0 . (7.42)

12These vector fields do not have fixed points because they are ∇̂-parallel and so they cannot vanish.
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Since the curvature F of a principal bundle connection λ is identified with the horizontal

part of dλ, we find that

Fa =
1

2
Ha

ije
i ∧ ej . (7.43)

In addition the condition (7.36), part of which can also be written as H7

aij = 0, implies

that the curvature Fa is that of a g2 type of instanton on B with gauge Lie algebra sl(2, R)

or u(1) ⊕ u(1) ⊕ u(1). In terms of these principal bundle data, the metric ds2 and torsion

H of spacetime can be written as

ds2 = ηabλ
aλb + π∗ds̃2

H =
1

3
ηabλ

a ∧ dλb +
2

3
ηabλ

a ∧ Fb + π∗H̃ , (7.44)

where ds̃2 and H̃ is a metric and a three-form on B and horizontally lifted to P with π,

respectively.

It remains to determine the geometry of the base space B of the principal bundle. B is

equipped with a metric ds̃2 = δije
iej |B and a three-form H̃ which is the horizontal part of

H. Note that dH̃ 6= 0. In addition it is equipped with a G2-invariant three-form ϕ̃ such that

ϕ = π∗ϕ̃. This is because ϕ is horizontal and Laϕ = 0. Furthermore ˆ̃∇ϕ̃ = 0 which follows

from ∇̂ϕ = 0. Therefore B is a Riemannian manifold equipped with a metric connection

with skew-symmetric torsion and hol( ˆ̃∇) ⊆ G2 and thus admits a G2-structure. It has

been shown in [23] that any seven-dimensional manifold with an integrable G2-structure

admits a unique metric connection ˆ̃∇ with torsion a three-form

H̃ = −1

6
(dϕ̃, ?ϕ̃) ϕ̃ + ?dϕ̃ − ?(θ̃ ∧ ϕ̃) (7.45)

such that hol( ˆ̃∇) ⊆ G2, where

θ̃ = −1

3
? (?dϕ̃ ∧ ϕ̃) (7.46)

is the Lee-form and dvol(B) = e2 ∧ e3 ∧ e4 ∧ e6 ∧ e7 ∧ e8 ∧ e9. An integrable G2-structure

satisfies d ? ϕ̃ = −θ̃ ∧ ?ϕ̃. In addition the third condition in (7.36) can be rewritten as

θ̃ = 2dΦ̃ (7.47)

and so B is conformally balanced. If h = u(1) ⊕ u(1) ⊕ u(1), then the last condition

implies that the singlet H̃1 of H̃ in the decomposition Λ3(R7) = Λ3
1
⊕ Λ3

7
⊕ Λ3

27
vanishes,

H̃1 = 0. This implies that dϕ̃ is orthogonal to ?ϕ̃. These are precisely the manifolds with

G2-structures investigated in the context of supersymmetric backgrounds in [23]. Moreover

it can be shown that these G2-structures are conformally equivalent to cocalibrated G2-

structures of pure W3 type.13 However, if h = sl(2, R), then H̃1 is identified with the

structure constants of sl(2, R) and so H̃1 6= 0.

13The covariant derivative ∇̃ϕ̃ can be decomposed into four irreducible G2 representations W1, W2, W3

and W4 which are determined by dϕ̃ and d ? ϕ̃ [46], see also [43]. So there are sixteen G2-structures on a

seven-dimensional manifold.
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To summarize, the solution of the Killing spinor equations for the backgrounds that we

have investigated above can be described as follows: The spacetime is (locally) a principal

bundle P (H, B, π). The group H of the fibre has Lie algebra either u(1) ⊕ u(1) ⊕ u(1)

or sl(2, R), and P is equipped with a connection λ whose curvature F is a g2 instanton.

The base space B is a seven-dimensional manifold equipped with a metric connection with

skew-symmetric torsion ˆ̃∇ and hol( ˆ̃∇) ⊆ G2 and the associated G2 structure is conformally

balanced, i.e. it satisfies the conditions d ? ϕ̃ = −θ̃ ∧ ?ϕ̃ and θ̃ = 2dΦ̃. The metric and

torsion are given by (7.44), and the dilaton Φ is a function of B. If in addition H is abelian,

then (dϕ̃, ?ϕ̃) = 0.

Using the description of the geometry of spacetime in terms of principal bundle data,

we can write the exterior derivative of the torsion

dH = ηab Fa ∧ Fb + π∗ dH̃ . (7.48)

The first term in the right-hand-side of dH can be recognized as a representative of the first

Pontrjagin class of the principal bundle P . Therefore the non-horizontal part of H is the

form that trivializes the first Pontrjagin class of P on the bundle space. If one requires that

dH = 0, then the representative of the first Pontrjagin class of P should cancel against the

contribution from the base space B. Of course if P is a globally defined principal bundle

over B, then the condition dH = 0 implies that the first Pontrjagin form is exact and

therefore the first Pontrjagin class of the principal bundle should vanish. Observe that it

is not required that dH̃ = 0.

7.2 Field equations

7.2.1 Integrability conditions

We shall demonstrate that if the Bianchi identities of H and F are satisfied, then the

Killing spinor equations imply all the field equations. To see this, one can show that the

integrability conditions of the Killing spinor equations imply

E−A = E+A = 0 , En1 = −En1̄ = −1

2
BHn1m

m ,

E11 = −E11̄ =
1

6
εn̄p̄m̄BH1̄n̄p̄m̄ , Enp = −1

2
ε(n

m̄q̄BHp)1m̄q̄ ,

Enp̄ = −1

2
BH−+np̄ −

1

2
BHnp̄m

m − 1

4
εn

m̄q̄BHp̄m̄q̄1 +
1

4
εp̄

mqBHnmq1 ,

LH−A = LH+A = LH1A = 0 , e2ΦLHnp = BHnpm
m − εnp

m̄BHm̄1̄q
q ,

e2ΦLHnp̄ = BH−+np̄ −
1

2
εn

m̄q̄BHp̄m̄q̄1 −
1

2
εp̄

mqBHnmq1̄ ,

LF− = LF+ = 0 , e2ΦLFn = BF−+n + BFnp
p − BFn11̄ − εn

p̄q̄BF1p̄q̄ ,

e2ΦLF1 = BF−+1̄ − BF1̄n
n − 1

3
εn̄m̄p̄BFn̄m̄p̄ ,

LΦ =
1

4
BHp

p
m

m +
1

3
εnpmBH1npm (7.49)

and

BF−11̄ = BF−n
n , BF+11̄ = −BF+n

n ,
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BF−+1 − BF−+1̄ − BF1n
n − BF1̄n

n = 0 ,

BF−+1 − BF1n
n +

1

6
εnpmBFnpm +

1

6
εn̄p̄m̄BFn̄p̄m̄ = 0 ,

BF−n1̄ =
1

2
εn

p̄m̄BF−p̄m̄ , BF+n1 = −1

2
εn

p̄m̄BF+p̄m̄ ,

BF−+n − BFn11̄ −
1

2
εn

p̄m̄BFp̄m̄1̄ −
1

2
εn

p̄m̄BFp̄m̄1 = 0 ,

BH−ABC = BH+ABC = BHnp11̄ = BH11̄n
n = 0 ,

εn̄p̄m̄BH1̄n̄p̄m̄ = εnpmBH1npm = −εn̄p̄m̄BH1n̄p̄m̄ ,
1

6
εp̄m̄q̄BHnp̄m̄q̄ = BHn1p

p = −BHn1̄p
p ,

BH−+np̄ +
1

4
εn

m̄q̄BHp̄1̄m̄q̄ +
1

4
εn

m̄q̄BHp̄1m̄q̄ −
1

4
εp̄

mqBHnmq1̄ −
1

4
εp̄

mqBHnmq1 = 0 ,

BH−+np̄ + BHnp̄11̄ −
1

2
εp̄

mqBHnmq1̄ −
1

2
εp̄

mqBHnmq1 = 0 . (7.50)

In the above conditions, we have not imposed the Bianchi identity BH of H. In the order

of α′ that we are working BH = dH = 0 and so there is no contribution from the Bianchi

identities. But in the next order up in α′, the above integrability conditions are believed to

hold but dH 6= 0. As a result some of the field equations that are derived in the one-loop

sigma model approximation can be expressed in terms of dH. This has been used in [10]

to investigate heterotic backgrounds taking into account the two-loop and higher order

corrections to the field equations.

If we take BH = BF = 0, the integrability conditions above imply all field equations.

In the absence of the gauge field A, the only Bianchi identity that has to be imposed is

that of H. This has been computed in (7.48). We shall explore this to give examples of

some supersymmetric backgrounds.

7.2.2 Examples

As an example, let us consider the case where h = u(1) ⊕ u(1) ⊕ u(1). Then

λa = dxa + Aa (7.51)

and so

ds2 = ηab(dxa + Aa)(dxb + Ab) + δije
iej ,

H = ηab(dxa + Aa) ∧ dAb + π∗H̃ . (7.52)

If one requires closure of H and choose H̃ = −ηabA
a ∧ dAb + HB , then

H = ηab dxa ∧ dAb + HB , (7.53)

where HB is a three-form on B such that dHB = 0. Clearly dH = 0. Within a brane

interpretation of these solutions, the connection A0 along the time direction is thought of

as rotation while the remaining connections are thought of as wrapping.

A special case of this example is whenever the only non-vanishing rotation and wrap-

ping is a along a null direction. In this case, the Chern-Simons form contribution vanishes.
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Thus one can set H̃ = HB . Such kind of solutions have been consider before14 in [47]. The

metric and torsion are

ds2 = 2dv(du + A) + dx2 + δije
iej ,

H = 2 dv ∧ dA + HB . (7.54)

In such a case, the base space B is a conformally balanced Riemannian manifold equipped

with a connection ˆ̃∇ with torsion a three-form H̃ such that hol( ˆ̃∇) ⊆ G2 and H̃ is closed.

The form of dH in (7.48) raises the possibility of canceling the representative of the

first Pontrjagin class of P = M against the representatives first Pontrjagin classes of the

tangent bundle of M and that of the gauge bundle. This will solve the generalized Bianchi

identity of H, schematically dH ∼ α′(trR2 − trF 2), where dH is given in (7.48). As we

have already mentioned consistency in this case requires that the two loop correction to

the field equations should be taken into account. Nevertheless the integrability conditions

we have derived are still valid because the gravitino, dilatino and gaugino supersymmetry

transformations are not believed to receive corrections to this order but dH 6= 0. A

systematic investigation of such solutions will be given elsewhere.

8. N=3 backgrounds

8.1 Supersymmetry conditions

We have shown in section 3 that the three Killing spinors can be written as

ε1 = f (1 + e1234) ,

ε2 = g1(1 + e1234) + ig2(1 − e1234) ,

ε3 = h1(1 + e1234) + ih2(1 − e1234) + ih3(e12 + e34) , (8.1)

where f, g1, g2, h1, h2, h3 are spacetime functions.

Using the results we have derived for backgrounds with two supersymmetries, we can

write the gravitino Killing spinor equation of ε3 as

h1∂A log(h1f
−1)(1 + e1234) + ih2∂A log(h2g

−1
2 )(1 − e1234)

+i∂Ah3(e12 + e34) + ih3∇̂A(e12 + e34) = 0 . (8.2)

Evaluating this equation along 1 and e1234, we find that

h1∂A log(h1f
−1) + ih2∂ log(h2g

−1
2 ) − ih3Ω̂A,12 − ih3Ω̂A,34 = 0 ,

h1∂A log(h1f
−1) − ih2∂ log(h2g

−1
2 ) + ih3Ω̂A,1̄2̄ + ih3Ω̂A,3̄4̄ = 0 , (8.3)

and using (6.4) and (6.7), we get

∂A log(h1f
−1) = 0 ,

14Our current results correct some of the fractions of supersymmetry that have appeared in [47].
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∂A log(h2f
−1) = 0 . (8.4)

The remaining conditions of the gravitino Killing spinor equations on ε3 are

∂A log h3 +
1

2
Ω̂A,−+ = 0 , (8.5)

Ω̂A,11̄ + Ω̂A,22̄ − Ω̂A,33̄ − Ω̂A,44̄ = 0 , (8.6)

Ω̂A,+α = 0 , (8.7)

Ω̂A,42̄ = −Ω̂A,13̄ , (8.8)

Ω̂A,32̄ = Ω̂A,14̄ . (8.9)

The dilatino Killing spinor equation for ε3 implies the conditions

∂+Φ = 0 ,

∂1̄Φ = −H23̄4̄ +
1

2
H22̄1̄ −

1

2
H33̄1̄ −

1

2
H44̄1̄ −

1

2
H+−1̄ ,

∂2̄Φ = H13̄4̄ +
1

2
H11̄2̄ −

1

2
H33̄2̄ −

1

2
H44̄2̄ −

1

2
H+−2̄ ,

∂3̄Φ = −H41̄2̄ −
1

2
H11̄3̄ −

1

2
H22̄3̄ +

1

2
H44̄3̄ −

1

2
H+−3̄ ,

∂4̄Φ = H31̄2̄ −
1

2
H11̄4̄ −

1

2
H22̄4̄ +

1

2
H33̄4̄ −

1

2
H+−4̄ ,

H+1̄1 + H+2̄2 − H+3̄3 − H+4̄4 = 0 ,

H+3̄4̄ = −H+1̄2̄ ,

H+4̄2 = −H+1̄3 ,

H+3̄2 = H+1̄4 . (8.10)

Combining the above results with the conditions we have derived for the first two Killing

spinors ε1, ε2, in section 6.1, the gravitino Killing spinor equations implies the conditions

∂A log f +
1

2
Ω̂A,−+ = 0 , (8.11)

∂A log(grf
−1) = ∂A log(hpf

−1) = 0, r = 1, 2 p = 1, 2, 3 , (8.12)

Ω̂A,+ᾱ = 0 , α, β = 1, 2, 3, 4 , (8.13)

Ω̂A,ᾱβ̄ = 0 , (8.14)

Ω̂A,11̄ + Ω̂A,22̄ = 0 , (8.15)

Ω̂A,33̄ + Ω̂A,44̄ = 0 , (8.16)

Ω̂A,42̄ = −Ω̂A,13̄ , (8.17)

Ω̂A,32̄ = Ω̂A,14̄ , (8.18)

and the dilatino Killing spinor gives

∂+Φ = 0 , (8.19)
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∂1̄Φ = −1

2
H23̄4̄ +

1

2
H22̄1̄ −

1

2
H+−1̄ , (8.20)

∂2̄Φ =
1

2
H13̄4̄ +

1

2
H11̄2̄ −

1

2
H+−2̄ , (8.21)

∂3̄Φ = −1

2
H41̄2̄ +

1

2
H44̄3̄ −

1

2
H+−3̄ , (8.22)

∂4̄Φ =
1

2
H31̄2̄ +

1

2
H33̄4̄ −

1

2
H+−4̄ , (8.23)

Hᾱβ̄γ̄ = 0 , (8.24)

H23̄4̄ + H33̄1̄ + H44̄1̄ = 0 , (8.25)

−H13̄4̄ + H33̄2̄ + H44̄2̄ = 0 , (8.26)

H41̄2̄ + H11̄3̄ + H22̄3̄ = 0 , (8.27)

−H31̄2̄ + H11̄4̄ + H22̄4̄ = 0 , (8.28)

H+ᾱβ̄ = 0 , (8.29)

H+11̄ + H+22̄ = 0 , (8.30)

H+33̄ + H+44̄ = 0 , (8.31)

H+4̄2 = −H+1̄3 , (8.32)

H+3̄2 = H+1̄4 . (8.33)

It remains to investigate the geometric properties of N = 3 backgrounds which are implied

by the above conditions.

8.2 Geometry

8.2.1 The holonomy of ∇̂ connection

As we have explained in previous cases, the holonomy of ∇̂ is contained in the stability

subgroup of the Killing spinors in Spin(9, 1), which in this case is Sp(2) n R
8. This can

be seen explicitly in the gauge where the spacetime functions f , gr and hp in the Killing

spinors are constant. It is clear from the supersymmetry conditions (8.12) that for this it

suffices to find a gauge Spin(9, 1) transformation to set f = 1. As in previous cases, this

gauge can be attained with a Spin(9, 1) gauge transformation in the direction Γ05. In this

gauge, (8.11) implies that Ω̂A,−+ = 0 and so with (8.13), we have

Ω̂A,+B = 0 . (8.34)

Then the remaining conditions of the gravitino Killing spinor equations imply that the

connection ∇̂ takes values in sp(2)⊕sR
8 and so the holonomy of the connection is contained

in Sp(2) n R
8. Moreover, we can set ε1 = 1 + e1234, ε2 = i(1 − e1234) and ε3 = i(e12 + e34)

using a constant GL(3, R) transformation. This is in agreement with the general arguments

we have presented in section 4.1. Conversely, if hol(∇̂) ⊆ Sp(2) n R
8, then there are three

parallel spinors which solve the gravitino Killing spinor equation.
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8.2.2 Spacetime forms and the geometry of spacetime

We have shown that in the gauge f = 1 the Killing spinors can be chosen as ε1 = 1+ e1234,

ε2 = i(1 − e1234) and ε3 = i(e12 + e34). The spacetime form bilinears associated with the

spinors (ε1, ε1), (ε1, ε2) and (ε2, ε2) have already been computed in previous sections. After

an additional normalization of the spinors with 1/
√

2, we find the non-vanishing spacetime

form bilinears of the pairs (ε1, ε3), (ε2, ε3), (ε3, ε3) are the one-forms

κ(ε3, ε3) = e0 − e5 , (8.35)

the three-forms

ξ(ε1, ε3) = (e0 − e5) ∧ ωK ,

ξ(ε2, ε3) = −(e0 − e5) ∧ ωJ , (8.36)

and the five-forms

τ(ε1, ε3) = −(e0 − e5) ∧ ωI ∧ ωJ ,

τ(ε2, ε3) = −(e0 − e5) ∧ ωI ∧ ωK ,

τ(ε3, ε3) = −(e0 − e5) ∧
[

4Re (e1̄ ∧ e2̄ ∧ e3 ∧ e4) +
1

2
ω̌ ∧ ω̌

]

, (8.37)

where we have set ωI = ω,

ωJ = e1 ∧ e2 + e1̄ ∧ e2̄ + e3 ∧ e4 + e3̄ ∧ e4̄ ,

ωK = i(e1 ∧ e2 − e1̄ ∧ e2̄ + e3 ∧ e4 − e3̄ ∧ e4̄) , (8.38)

and

ω̌ = i(e1 ∧ e1̄ + e2 ∧ e2̄ − e3 ∧ e3̄ − e4 ∧ e4̄) . (8.39)

The forms ωI , ωJ and ωK are the familiar two-forms that appear on manifolds with an

Sp(2)-structure and I, J and K are the associated endomorphisms. The two-form ω̌ does

not have an invariant meaning but it is necessary to write the five-form of the Spin(7)nR
8-

structure associated with the spinor η3.

As in all the previous null supersymmetric backgrounds, the one-form κ = e− is asso-

ciated with a null parallel vector field X. In addition the conditions (8.29)-(8.32) of the

dilatino Killing spinor equations imply that iXH takes values in sp(2)⊕s R
8. This in turn

implies that X leaves invariant the Sp(2) n R
8-structure of the spacetime, i.e.

LXα = 0 , (8.40)

where α are all the form bilinears constructed from the parallel spinors.

8.2.3 Solution of the Killing spinor equations

The solution of the Killing spinor equations in this case is similar to that of the SU(4)nR
8

case. This is because the conditions conditions that we get for Sp(2) n R
8 are those of

SU(4) n R
8 but with respect to each I, J and K endomorphisms.
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The supersymmetry conditions that arise from the gravitino and dilatino Killing spinor

equations can be decomposed in representations of sp(2). This is easily done using sp(2) =

so(5) but we shall not pursue this here because of the similarity of this case with that

of SU(4) n R
8. For example, the conditions that arise from the dilatino Killing spinor

equation can be written as

∂+Φ = 0 , 2∂iΦ − H−+i = (θI)i = (θJ)i = (θK)i ,

H+ij(δ
i
m ± i(Ir)

i
m)(δj

n ± i(Ir)
j
n) = 0 ,

Hijk(δ
i
m ± i(Ir)

i
m)(δj

n ± i(Ir)
j
n)(δk

l ± i(Ir)
k
l) = 0 , (8.41)

where θI , θJ and θK are the Lee forms of the endomorphisms I, J and K, see (6.22),

(Ir, r = 1, 2, 3) = (I, J,K), and i, j, k, l,m, n = 1, 2, 3, 4, 6, 7, 8, 9. The last three conditions

are the vanishing of the (3,0) and (0,3) components of H with respect to I, J and K.

The gravitino Killing spinor equation implies that κ is parallel and so iXH = dκ. In

addition ∇̂A(ωI)ij = ∇̂A(ωJ)ij = ∇̂A(ωK)ij = 0 and so the torsion can be expressed in

terms of the geometry and the form spinor bilinears ωI , ωJ and ωK . The expressions are

those that we have given for SU(4) n R
8 (6.24) but with respect to each of the I, J and K

endomorphisms. The only component of the torsion that it is not specified is H10

−ij, where

the ten-dimensional representation is the adjoint representation of sp(2). The metric and

torsion can be written in a way similar to that of SU(4) n R
8 in (6.26).

8.2.4 Special coordinates and a deformation family

As in the Spin(7)nR
8 and SU(4)nR

8 cases before, one can introduce coordinates adapted

to the parallel vector field X, X = ∂/∂u, and write the metric as in (6.27). The analysis

of the construction is similar to the cases we have already investigated and so we shall not

pursue this further here. For example, one can introduce a frame (e−, e+, ei) adapted to

the special coordinates mentioned above as in (5.23).

The spacetime also admits three pairs of integrable distributions, one pair for each of

the endomorphisms I, J and K. This is similar to the SU(4) n R
8 case which we have

shown to admit one pair of integrable distributions with respect to the endomorphism I.

The spacetime again has an interpretation as a two parameter family of an eight-

dimensional manifold B with an Sp(2)-structure. Again for this, one has to introduce

a frame (E−, E+, Ei) as in (5.31), where (E+, E−) are chosen to define an integrable

distribution of codimension eight with typical leaf B. There are two cases to consider. If

the null vector has non-vanishing rotation then, although B admits an Sp(2)-structure, it

is not compatible with the induced connection ˆ̃∇ with torsion. The details are similar to

those of the Spin(7)n R
8 and SU(4)n R

8 cases, we have already investigated. However, if

the rotation of X vanishes, then the above data are compatible, i.e. B is a hyper-complex

manifold and all the complex structures are parallel with respect to the induced connection
ˆ̃∇ with torsion. The conditions of the dilatino Killing spinor equation (8.41) also imply

that B is conformally balanced. Therefore B is a conformally balanced HKT manifold. The

geometric properties of such manifolds have been extensively investigated in the literature,

see e.g. [12, 13, 19, 20].
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8.2.5 Field Equations

The integrability conditions of the Killing spinor equations imply that if the Bianchi iden-

tities of H and F are satisfied, BH = 0, BF = 0, then all the field equations are satisfied

provided that E−− = 0, LH−A = 0 and LF− = 0. This may have been expected be-

cause these models are special cases of those with Spin(7) n R
8- and SU(4) n R

8-invariant

spinors. Examples of backgrounds with Sp(2) n R
8-invariant Killing spinors have been

given in, e.g. [48, 49].

9. N = 4 backgrounds

9.1 Backgrounds with SU(3)-invariant spinors

As we have explained, without loss of generality the Killing spinors can be chosen as

ε1 = 1 + e1234 , ε2 = i(1 − e1234) , ε3 = (e15 + e2345) , ε4 = i(e15 − e2345) . (9.1)

Substituting these into the gravitino Killing spinor equation, one finds that the connection

∇̂ takes values in su(3), i.e.

Ω̂A,−+ = Ω̂A,−1 = Ω̂A,+1 = Ω̂A,11̄ = Ω̂A,n
n = Ω̂A,np = 0 ,

Ω̂A,−n = Ω̂A,+n = Ω̂A,1n = Ω̂A,1̄n = 0 , m, n, p, . . . = 2, 3, 4. (9.2)

In addition, the dilatino Killing spinor equation implies the conditions

∂+Φ = ∂−Φ = ∂1Φ = ∂1̄Φ = 0 ,

∂n̄Φ − 1

2
Hn̄p

p = 0 , (9.3)

H+11̄ + H+n
n = 0 , H+np = 0 , H+1̄n̄ = 0 ,

H−11̄ − H−n
n = 0 , H−np = 0 , H−1n̄ = 0 ,

H1np = Hnpm = 0 ,

H1̄n
n + H−+1̄ = 0 , H1n̄p̄ = 0 , Hn̄11̄ + H−+n̄ = 0 . (9.4)

It remains to investigate the restrictions on the geometry of spacetime imposed by the

above conditions.

9.2 Spinor bilinears, backgrounds with four isometries and supersymmetry con-

ditions

The conditions (9.2) imply that the holonomy of the connection ∇̂ is contained in SU(3),

hol(∇̂) ⊆ SU(3). The form bilinears of the first two Killing spinors have already been

computed in the context of supersymmetric backgrounds with SU(4)nR
8-invariant spinors,

and the form bilinears of the first and the third Killing spinor have already been computed

in the context of supersymmetric backgrounds with G2-invariant spinors. The remaining

spinor pairs give the one-forms

κ(ε1, ε4) = −κ(ε2, ε3) = −e6 , κ(ε2, ε4) = −e1 ,
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κ(ε3, ε3) = κ(ε4, ε4) = e0 + e5 , (9.5)

the three-forms

ξ(ε1, ε4) = e0 ∧ e5 ∧ e6 − Im(χ̂) − e1 ∧ ω̂ ,

ξ(ε2, ε3) = −e0 ∧ e5 ∧ e6 − Im(χ̂) + e1 ∧ ω̂ ,

ξ(ε2, ε4) = −e0 ∧ e1 ∧ e5 − Re(χ̂) + e6 ∧ ω̂ ,

ξ(ε3, ε4) = (e0 + e5) ∧ (e1 ∧ e6 + ω̂) , (9.6)

and the five-forms

τ(ε1, ε4) = e0 ∧ e5 ∧ Im(χ̂) + e1 ∧ e6 ∧ Re(χ̂) +
1

2
e6 ∧ ω̂ ∧ ω̂ − ω̂ ∧ e0 ∧ e1 ∧ e5 ,

τ(ε2, ε3) = e0 ∧ e5 ∧ Im(χ̂) + e1 ∧ e6 ∧ Re(χ̂) − 1

2
e6 ∧ ω̂ ∧ ω̂ + ω̂ ∧ e0 ∧ e1 ∧ e5 ,

τ(ε2, ε4) = e0 ∧ e5 ∧ Re(χ̂) − e1 ∧ e6 ∧ Im(χ̂) +
1

2
e1 ∧ ω̂ ∧ ω̂ − ω̂ ∧ e0 ∧ e5 ∧ e6 ,

τ(ε3, ε3) = (e0 + e5) ∧
[

−e1 ∧ Re(χ̂) − e6 ∧ Im(χ̂) − 1

2
ω̂ ∧ ω̂ − ω̂ ∧ e1 ∧ e6

]

,

τ(ε3, ε4) = (e0 + e5) ∧ [e1 ∧ Im(χ̂) − e6 ∧ Re(χ̂)] ,

τ(ε4, ε4) = −(e0 + e5) ∧
[

−e1 ∧ Re(χ̂) − e6 ∧ Im(χ̂) +
1

2
ω̂ ∧ ω̂ + ω̂ ∧ e1 ∧ e6

]

. (9.7)

As we have explained all the form bilinears of the parallel spinors are parallel with

respect to the ∇̂ connection. In particular, the one-forms e−, e+, e1 and e1̄ are ∇̂-parallel.

Let us denote with X,Y,Z and Z̄ the associated vector fields, respectively. In general, the

vector space spanned by X,Y,Z and Z̄ is not closed under Lie brackets. To see this recall

that commutator of two vector field, say X,Y , is given by iX iY H and the supersymmetry

conditions do not imply that the component H−+k of H vanishes, and similarly for the other

vector fields. This is reminiscent to the situation we have encountered in the backgrounds

with G2-invariant Killing spinors. Again there are many possibilities ranging from requiring

X,Y,Z and Z̄ to commute to taking the spacetime to be a non-abelian Lorentzian Lie

group. We shall not investigate all cases, instead we shall require that the vector space h

spanned by X,Y,Z and Z̄ closes under Lie brackets, i.e. that h is a Lie algebra. This in

particular implies that

Habn = 0 , a, b = +,−, 1, 1̄ , n = 2, 3, 4 . (9.8)

Observe that some of these conditions are already implied by the dilatino Killing spinor

equation. The remaining non-vanishing commutators of the vector fields are unconstrained

by the conditions of the dilatino Killing spinor equation and so they can span any four-

dimensional Lorentzian Lie algebra. The conditions from the gravitino and dilatino Killing

spinor equations in the case where h is a Lie algebra can be summarized as

Ω̂A,ab = Ω̂A,n
n = Ω̂A,an = Ω̂A,np = 0 , (9.9)

and

∂aΦ = 0 , ∂n̄Φ − 1

2
Hn̄p

p = 0
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Hmnp = Habn = Hanp = 0 ,
1

3!
εa

bcdHbcd − iHap
p = 0 , (9.10)

respectively, where ε = −ie− ∧ e+ ∧ e1 ∧ e1̄. The above supersymmetry conditions have

been written in apparent representations of so(3, 1) ⊕ su(3).

We have explained that Habn = 0 is required by the closure of the Lie brackets of the

vector fields. The condition Hanp = 0 implies that

LX ω̂ = 0 , LY ω̂ = 0 , LZω̂ = 0 , LZ̄ ω̂ = 0 . (9.11)

However, unlike the G2 case, X,Y,Z and Z̄ do not always preserve the SU(3)-structure.

This is because from the last condition of the dilatino Killing spinor equations the compo-

nents Hak
k of the torsion are not required to vanish, unless h is abelian. In particular, we

find that

LXaχ̂ = Han
nχ̂ , (9.12)

where Xa = (X,Y,Z, Z̄). Thus the parallel vector fields do not preserve the holomorphic

volume form of the SU(3)-structure.

9.2.1 Solution of the Killing spinor equations

As for the supersymmetric backgrounds with G2-invariant spinors, the spacetime M of

backgrounds with SU(3)-invariant spinors can be interpreted as a principal bundle M =

P (H, B, π) equipped with a connection λ, where H is a Lorentzian group with Lie algebra

h spanned by the four parallel vector fields, B is the space of orbits of H in M = P , and

π is the projection of the principal bundle. The various formulae we have found in (7.1.4)

can be extended to the SU(3) case we are investigating here. In particular, the connection

on the principal bundle can again be chosen as λa = ea, where now a = +,−, 1, 1̄.

Combining the conditions of the gravitino and dilatino Killing spinor equations, we

find that the Levi-Civita connection of the spacetime satisfies the conditions,

Ωn,ab = 0 , 2Ω[a,bc] = Habc , Ω20

a,bc = 0 ,

2Ωa,n
n = Han

n = − i

3!
εa

bcdHbcd , 2Ωp,n
n = Hpn

n = −2∂pΦ ,

Ωa,bn = 0 , Ωn,pa = 0 , 2Ωn̄,ap = Hn̄ap ,

Ωn,pm = 0 , 2Ωn̄,mq = Hn̄mq , Ωa,np = 0 , (9.13)

which we have expressed in terms of so(3, 1) ⊕ su(3) representations. Some of above con-

ditions can also be seen as expressing the flux H in terms of the Levi-Civita connection.

As we shall see H is determined from the spinor bi-linears. Using the relations (9.13), the

torsion free conditions of the frame eA can be written as

dea =
1

2
Ha

bce
b ∧ ec + Ha

np̄e
n ∧ ep̄ ,

den = −Ωa,
n

pe
a ∧ ep +

1

2
Hn

pae
p ∧ ea − Ωp̄,

n
mep̄ ∧ em

− Ωp,
n

m̄ep ∧ em̄ − Ωp,
n

mep ∧ em . (9.14)
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In terms of principal bundle data, the first torsion free condition above can be inter-

preted as the Cartan structure equation for the connection λ, i.e.

dλa − 1

2
Ha

bcλ
b ∧ λc − 1

2
Ha

ije
i ∧ ej = 0 , i, j, k, l = 2, 3, 4, 7, 8, 9 , (9.15)

and so the curvature of λ is

Fa =
1

2
Ha

ije
i ∧ ej . (9.16)

In addition the condition (9.10) implies that the curvature Fa satisfies the Donaldson

condition. Note that F takes values in u(3) rather than in su(3) because if h is not abelian,

the complex trace of F does not vanish. The torsion H of spacetime can be written as in

(7.44). Therefore the metric and torsion of spacetime in terms of principal bundle data

can be written as

ds2 = ηabλ
aλb + δije

iej

H =
1

3
ηabλ

a ∧ dλb +
2

3
ηabλ

a ∧ Fb + π∗H̃ (9.17)

where H̃ is a three form of the base space B horizontally lifted to P .

It remains to investigate the geometry of the base space B. The Riemannian manifold

B is equipped with a metric ds̃2 and a three form H̃ such that π∗ds̃2 = δije
iej . Therefore,

one can define a metric connection ˆ̃∇ on B with skew-symmetric torsion. In addition B

is equipped with a two-form ω̃ such that ω̂ = π∗ω̃. This follows from the property of ω̂

to be invariant under H. The two-form ω̃ is parallel with respect to ˆ̃∇. This follows from

∇̂ω̂ = 0. The associated almost complex structure Ĩ of the pair (ds̃2, ω̃) is integrable.

This follows from the fact that H̃ is (2,1) and (1,2) with respect to Ĩ . Therefore B is a

KT manifold which is conformally balanced. The latter condition follows from the second

equation in the conditions that arise from the dilatino Killing spinor equation in (9.10),

i.e. the Lee form can be written as θ̃ = 2dΦ, where

θ̃ = − ? (?dω̃ ∧ ω̃) , (9.18)

and dvol(B) = e2∧e3∧e4∧e7∧e8∧e9. It is well-known that for such manifolds the torsion

three-form is uniquely determined in terms of the complex structure and the metric as

H̃ = −iĨdω̃ = ?dω̃ − ?(θ̃ ∧ ω̃) . (9.19)

It remains to find whether B has a compatible SU(3)-structure. There are two cases to

consider depending on whether or not H is abelian.

First suppose that H is abelian, then Han
n = 0 and therefore χ̂ is invariant under H.

In such a case B admits a compatible SU(3)-structure, i.e. there is a (3,0)-form χ̃ on B such

that it is parallel with respect to ˆ̃∇. Thus hol( ˆ̃∇) ⊆ SU(3). Therefore B is a conformally

balanced KT manifold with a compatible SU(3)-structure. An analysis of the geometry of

these manifolds in terms of G-structures can be found in [43, 11]. The covariant derivatives

∇̃ω̃ and ∇̃χ̃ can be decomposed in terms of five irreducible SU(3) representations as in the
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case of eight-dimensional manifolds with SU(4)-structures that we have already described.

Since B is complex W1 = W2 = 0. In addition W4 and W5, which can be represented by

the Lee forms θω̃ = θ̃ given in (9.18) and

θReχ̃ = −1

2
? (?dReχ̃ ∧ Reχ̃), (9.20)

respectively, are related as

θω̃ = θReχ̃ = 2dΦ . (9.21)

Next suppose that H is not abelian. There are three distinct four-dimensional non-

abelian Lorentzian Lie algebras. This is because the structure constants of such Lie algebra

are dual to a vector in four-dimensional Minkowski space. Since the generators of the Lie

algebra are determined up to a Lorentz transformation, there are three types of Lie algebras

depending on whether the vector is timelike, spacelike or null. These are isomorphic to

R⊕su(2), sl(2, R)⊕u(1) or so(2)⊕s h2(R), respectively, where h2 is the Heisenberg algebra

of dimension three. In this case, χ̂ is not invariant under H. As a result although there still

exists a χ̃ on B which horizontally lifts to χ̂, χ̃ is a section of Λ3,0 ⊗ L, where L = P ×ρ C

is a line bundle over B associated to the principal bundle P . The representation15 ρ

is induced from (9.12). Therefore χ̃ is a tensorial form of degree three associated with

the representation ρ in the terminology of [45]. The structure that it is associated with

such a form is reminiscent of a Spinc-structure and so we shall say that B admits an

SUc(3)-structure but not an SU(3) one as one might have been expecting. Therefore B

is a conformally balanced KT manifold. The geometry of these manifolds can also be

examined using the Gray-Hervella classes [22]. It turns out that W1 = W2 = 0, because B

is complex, and W4 which is represented by the Lee form θ̃ defined in (9.18).

To examine some other aspects of the geometry of spacetime, we consider the one-forms

{en, en̄}, {en, e1, e−, } and {ea, en}. These span integrable distributions of co-dimensions

four, five and three, respectively.16 The first distribution is associated with the principal

bundle structure of the spacetime which we have already investigated. The second dis-

tribution implies that the space admits a certain Lorentzian complex structure, i.e. the

spacetime is a “Lorentzian”-holomorphic manifold. Observe that {en̄, e1̄, e−, } is also an

integrable distribution. The third distribution is related to the property of B to be a

complex manifold.

To summarize the geometry of backgrounds with SU(3) invariant spinors, we have

found that the spacetime is (locally) a principal bundle M = P (H, B, π) equipped with

a connection λ. The fibre is a four-dimensional Lorentzian Lie group and the curvature

F of the connection λ satisfies the Donaldson condition. The geometry of the base space

B depends on whether or not H is abelian. If H is abelian, then the base space B is a

balanced KT manifold with an SU(3)-structure. If H is not abelian, then B is a balanced

KT manifold equipped with a bundle L associated to P and a section χ̃ of Λ3,0 ⊗ L. The

metric and torsion of spacetime in terms of principal bundle data are given in (9.17), and

the dilaton Φ is a function of B.

15We assume that ρ is not trivial. If it is trivial, then the analysis reduces to that of the abelian case.
16There are other integrable distributions, i.e. the one spanned by the one-forms {en}.
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As in the G2 case, one can compute dH to find

dH = ηab Fa ∧ Fb + π∗ dH̃ . (9.22)

The first term in the right-hand-side of dH is a representative of the first Pontrjagin class

of the principal bundle P . If one requires that dH = 0, then the representative of the first

Pontrjagin class of P must cancel against a form on B. Of course if P is a globally defined

principal bundle over B and one imposes the condition dH = 0, then the first Pontrjagin

form is exact and therefore the first Pontrjagin class of the principal bundle should vanish.

9.2.2 Field equations and examples

An investigation of the integrability conditions of the Killing spinor equations imply all the

field equations are satisfied provided that one imposes the Bianchi identities BH = BF = 0.

This may have been expected because this class of backgrounds is a special case of those

with N = 2 supersymmetry and G2-invariant spinors.

In the absence of a gauge field, the only Bianchi identity that has to be imposed is that

of H which has been computed in (9.22). As an example, one can take H to be abelian.

Then, one can write λa = dxa + Aa and so we have

ds2 = ηab(dxa + Aa)(dxb + Ab) + δije
iej ,

H = ηab(dxa + Aa) ∧ dAb + H ′ , (9.23)

where F = dA the curvature of the connection takes values in su(3), i.e. it satisfies the

Donaldson condition. If in addition we require that dH = 0, then

H = ηabdxa ∧ dAb + HB (9.24)

after choosing H ′ = −ηabA
adAb + HB, where HB is a three-form on B such that dHB = 0.

Within a brane interpretation of these solutions, the connections Aa can be thought of as

a rotation and wrapping.

A special case of this example is whenever the only non-vanishing rotation and wrap-

ping is a along a null direction. In this case, the Chern-Simons form contribution vanishes.

Thus one can set H̃ = HB . Such kind of solutions have been consider before in [47]. The

metric and torsion are

ds2 = 2dv(du + A) + dx2 + dy2 + δije
iej ,

H = dv ∧ dA + HB . (9.25)

In such a case, the base space B is a integrable, conformally balanced strong KT Rieman-

nian manifold such that hol( ˆ̃∇) ⊆ SU(3) and H̃ is closed. An example of such manifold

was found in [50] and has been used as gravitational dual to N = 1 Yang-Mills theory

in four-dimensions [51]. The geometry of these models has been investigated in [7]. It is

remarkable that the six-dimensional manifold is also a principal bundle.
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9.3 Backgrounds with (SU(2) × SU(2)) n R
8-invariant spinors

9.3.1 Supersymmetry conditions

As we have already explained in 4.1, one can always arrange without loss of generality such

that the Killing spinors are

ε1 = 1 + e1234 , ε2 = i(1 − e1234) , ε3 = e12 − e34 , ε4 = i(e12 + e34) . (9.26)

The gravitino Killing spinor equation implies that the connection ∇̂ takes values in (su(2)⊕
su(2)) ⊕s R

8, i.e. that

Ω̂A,αβ = Ω̂A,np = 0 , Ω̂A,α
α = Ω̂A,n

n = 0 ,

Ω̂A,αn = Ω̂A,ᾱn = 0 ,

Ω̂A,+B = = 0 , α, β, . . . = 1, 2 , n, p, . . . = 3, 4 . (9.27)

The conditions that arise from the dilatino Killing spinor equation are

∂+Φ = 0 , ∂ᾱΦ − 1

2
Hᾱβ

β − 1

2
H−+ᾱ = 0 , ∂n̄Φ − 1

2
Hn̄p

p − 1

2
H−+n̄ = 0 , (9.28)

Hαβn = Hαnp = 0 , Hn̄αβ = Hᾱnp = 0 , Hnα
α = Hαn

n = 0 , (9.29)

H+αβ = H+α
α = H+np = H+n

n = H+αn = H+αn̄ = 0 . (9.30)

It remains to investigate the restrictions on the geometry of the spacetime that are implied

by the above conditions.

9.3.2 Geometry, holonomy and spinor bilinears

As in the previous null cases, the conditions that arise from the gravitino Killing spinor

equation (9.27) imply that hol(∇̂) ⊆ (SU(2) × SU(2)) n R
8. To give a further insight into

the geometry, one can compute the form bilinears of the Killing spinors. This has already

been done for the pairs of the first three Killing spinors. Therefore, it remains to compute

the forms of the pairs (ε1, ε4), (ε2, ε4), (ε3, ε4) and (ε4, ε4). In particular, we find the one

form

κ(ε4, ε4) = e0 − e5 , (9.31)

the three-forms

ξ(ε1, ε4) = −(e0 − e5) ∧ Im(χ1 + χ2) ,

ξ(ε2, ε4) = −(e0 − e5) ∧ Re(χ1 + χ2) ,

ξ(ε3, ε4) = −(e0 − e5) ∧ (ω1 − ω2) , (9.32)

and the five-forms

τ(ε1, ε4) = −(e0 − e5) ∧ (ω1 ∧ Re(χ2) + ω2 ∧ Re(χ1)) ,

τ(ε2, ε4) = (e0 − e5) ∧ (ω1 ∧ Im(χ2) + ω2 ∧ Im(χ1)) ,

τ(ε3, ε4) = −(e0 − e5) ∧ Im(χ∗
1 ∧ χ2) ,
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τ(ε4, ε4) = −(e0 − e5) ∧ (Re(χ∗
1 ∧ χ2) +

1

2
(ω1 − ω2) ∧ (ω1 − ω2)) , (9.33)

where ω1 = −(e1 ∧ e6 + e2 ∧ e7), ω2 = −(e3 ∧ e8 + e4 ∧ e9), χ1 = (e1 + ie6) ∧ (e2 + ie7) and

χ2 = (e3 + ie8) ∧ (e4 + ie9). All the form bilinears α constructed from the Killing spinors

are parallel with respect to the connection ∇̂,

∇̂α = 0 . (9.34)

Moreover as expected, (9.30) implies that iXH takes values in (su(2)⊕ su(2))⊕s R
8, where

X is the associated parallel vector field to κ. This in turn gives that

LXα = 0 , (9.35)

where again α stands for any form Killing spinor bilinear. Since X is Killing, LXH = 0

(dH = 0) and LXΦ = 0, X leaves all the geometry of spacetime including the (SU(2) ×
SU(2)) n R

8-structure invariant.

9.3.3 Solution of the Killing spinor equations

The solution of the Killing spinor equations is similar to that of the SU(4) n R
8 case.

The supersymmetry conditions of both the gravitino and dilatino Killing spinor equations

have been decomposed in terms of SU(2) × SU(2) representations in an apparent way.

The minimal set of covariantly constant forms that characterizes the conditions (9.27) that

arise from the gravitino Killing spinor equation are

κ = e− , ξI = e− ∧ ωI , ξJ = e− ∧ ωJ , ξ1 = e− ∧ χ1 , ξ2 = e− ∧ χ2 . (9.36)

where

ωI = ω1 + ω2 , ωJ = ω1 − ω2 . (9.37)

In particular, if we denote the forms (9.36) collectively with β, then the conditions that

arise from the gravitino Killing spinor equation are equivalent to

∇̂β = 0 . (9.38)

Note that the endomorphisms I, J of the tangent bundle of the spacetime commute,

i.e. IJ = JI. The forms (ω1, χ1) and (ω2, χ2) are associated with an SU(2) × SU(2)-

structure.

The conditions (9.29) imply that H is a (2,1) and (1,2) form with respect to both I

and J , i.e. the (3,0) and (0,3) components with respect to both I, J vanish. The last two

conditions in (9.28) can be rewritten as

2∂αΦ = (θ1)α , 2∂nΦ = (θ2)n , (9.39)

where θ1 and θ2 are the Lee forms of the endomorphisms I1 and I2 associated with ω1 and

ω2, respectively, see (6.22). The conditions (9.30) imply that H+ij, i, j = 1, 2, 3, 4, 6, 7, 8, 9

takes values in su(2) ⊕ su(2).
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The supersymmetry conditions can be solved for the fluxes. It is easy to see that the

expressions for H−αβ and Hαβγ̄ , and H−np and Hnmq̄ can be given as in (6.24) but now with

respect to the endomorphisms I1 and I2 associated to the forms ω1 and ω2, respectively.

Similarly H−α
α and H−n

n can be expressed as in (6.25) but now with respect to χ1 and χ2,

respectively. Therefore all H fluxes are determined in terms of the spinor bilinears and the

metric of spacetime apart from the component H6

−ij which takes values in su(2) ⊕ su(2).

The metric and torsion of the spacetime can be written as

ds2 = 2e−e+ + 2δαβ̄eαeβ̄ + 2δmn̄emen̄

H = e+ ∧ dκ − [
1

2
(I1)

m
i∇−(ω1)mj +

1

2
(I2)

m
i∇−(ω2)mj + (I1)

m
i∇−(ω2)mj

+ (I2)
m

i∇−(ω1)mj ]e
− ∧ ei ∧ ej − 1

8
Im((χ̄1)

αβ∇−(χ1)αβ) e− ∧ ω1

− 1

8
Im((χ̄2)

mn∇−(χ2)mn)e− ∧ ω2 +
1

2
H6

−ije
− ∧ ei ∧ ej

+
1

3!
Hijke

i ∧ ej ∧ ek , (9.40)

where i, j, k, l = 1, 2, 3, 4, 6, 7, 8, 9, Hijk is determined in terms of ω1, ω2, I1 and I2 as has

been explained above.

9.3.4 Local coordinates, distributions and a deformation family

One can adapt coordinates along the null parallel vector field X and write the metric of

the spacetime as in (5.22). Then one can adapt a frame (e−, e+, eα, eᾱ, en, en̄) in a way

similar to that in (5.23). The spacetime admits various integrable distributions. Apart

from the distributions of co-dimension five spanned by (e−, eα, en) and (e−, eᾱ, en̄) which

are analogues to those of the SU(4)nR
8 backgrounds, there are also integrable distributions

of codimension three spanned by (e−, eα, en, en̄) and (e−, eα, eβ̄ , en). This can be easily seen

using the torsion free conditions of the frame (e−, e+, eα, eᾱ, en, en̄).

The spacetime has the interpretation as a two parameter family of an eight-dimensional

manifold with an SU(2)×SU(2)-structure. This is done by adapting a frame (E−, E+, Ei)

similar to that in (5.31). The one-forms (E−, E+) span a codimension eight integrable

distribution with leaves the eight-dimensional manifold B. There are two cases to consider.

In the generic case, and in particular if the rotation of the null vector field does not

vanish, dκ = de− 6= 0, B admits an SU(2) × SU(2)-structure which is not compatible

with the induced connection ˆ̃∇ with torsion H̃ = H|B . The explanation for this has been

presented in detail for the Spin(7) n R
8 case and it will not be repeated here. However,

if dκ = de− = 0, then B admits an SU(2) × SU(2)-structure which is compatible with

the induced connection ˆ̃∇. In such a case, B is a conformally balanced eight-dimensional

manifold equipped with (i) metric connection ˆ̃∇ with torsion given by a three-form H̃, (ii)

two commuting complex structures Ĩ and J̃ , Ĩ J̃ = J̃ Ĩ , which are the restrictions of I, J ,

such that ˆ̃∇Ĩ = ˆ̃∇J̃ = 0 and (iii) hol( ˆ̃∇) ⊆ SU(2)×SU(2). The manifold B is conformally

balanced because the Lee forms satisfy θ̃Ĩ = θ̃J̃ = 2dΦ̃ as required by the supersymmetry

conditions of the dilatino Killing spinor equation (9.28). Note that B admits an integrable

product structure Π = Ĩ J̃ , i.e. Π2 = 1. The geometry of B can be also analyzed using
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G-structures but this is very similar to the SU(n) cases we have already examined and we

shall not pursue this further here.

The geometric properties of manifolds equipped with two commuting complex struc-

tures compatible with a metric connection with torsion have been investigated before in the

physics literature in the context of sigma models with (2,2) worldvolume supersymmetry

[1, 3]. In particular, special coordinates have been introduced and the local expression

for the metric has been given. In addition the simultaneous integrability properties of the

complex structures and the product structure have been examined in detail. As in the

previews null cases, the integrability conditions of the Killing spinor imply that all field

equations are satisfied provided that the Bianchi identities are imposed and one requires

that E−− = 0, LH−A = 0 and LF− = 0.

10. N = 8 backgrounds

10.1 Backgrounds with SU(2)-invariant spinors

10.1.1 Supersymmetry conditions

One can choose without loss of generality the Killing spinors, see section 4.1, as

ε1 = 1 + e1234 , ε2 = i(1 − e1234) , ε3 = e12 − e34 , ε4 = i(e12 + e34) ,

ε5 = e15 + e2345 , ε6 = i(e15 − e2345) , ε7 = e52 + e1345 , ε8 = i(e52 − e1345) . (10.1)

Substituting them in to the gravitino Killing spinor equation, one finds that the connection

∇̂ takes values in su(2), i.e.

Ω̂A,+α = Ω̂A,−α = Ω̂A,−+ = Ω̂A,αβ = Ω̂A,αβ̄ = Ω̂A,αn = Ω̂A,αn̄ = 0 ,

Ω̂A,+n = Ω̂A,−n = 0 , Ω̂A,np = Ω̂A,n
n = 0 , α, β = 1, 2 , n, p = 3, 4 . (10.2)

Similarly, the conditions that arise from the dilatino Killing spinor equation equation are

∂+Φ = ∂−Φ = ∂αΦ = 0 , ∂n̄Φ − 1

2
Hn̄p

p = 0 ,

Hᾱβ
β + H−+ᾱ = 0 , Hαn

n = 0 , H−+n = 0 ,

Hαβn = Hαnp = 0 , Hn̄αβ = Hᾱnp = 0 , Hnαβ̄ = 0 ,Hnα
α = 0 ,

H−n
n = 0 , H−αn = 0 , H−n̄p̄ = 0 , H−αn̄ = 0 , H−12̄ = 0 , H−11̄ = H−22̄ ,

H+αβ = 0 , H+α
α = 0 , H+np = 0 , H+n

n = 0 , H+αn = 0 , H+αn̄ = 0 . (10.3)

We shall next investigate the restrictions that these conditions above impose on the geom-

etry of spacetime.

10.1.2 Geometry and form bilinears

The gravitino Killing spinor equation implies that the holonomy of ∇̂ is contained in

SU(2), hol(∇̂) ⊆ SU(2). Several of the Killing spinor form bilinears have been computed

in previous cases. The remaining pairs can also easily be computed. This is because we

have found the form spinor bilinears of all possible types of spinors, see A.2.6. As a result,

the forms of the remaining pairs are given from those we have computed already by an

appropriately relabeling of indices. However, we shall not explicitly give the result because

it is not particularly enlightening.
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All the forms that arise form the Killing spinor bilinears are parallel with respect to

∇̂. A basis in the ring of parallel forms is e−, e+, e1, e6, e2, e7, ω2 and χ2, where

ω2 = −(e3 ∧ e8 + e4 ∧ e9) , χ2 = (e3 + ie8) ∧ (e4 + ie9) . (10.4)

In particular this implies that the one-forms e−, e+, eα, eᾱ, eα = 1√
2
(eα+ie5+α), are parallel

and so the associated vectors fields X,Y,Zα, Zᾱ are Killing. Unlike the cases of backgrounds

with G2- and SU(3)-invariant spinors, the vector space h = Span(X,Y,Zα, Zᾱ) closes under

Lie brackets. This is a consequence of the conditions of the dilatino Killing spinor equations

and in particular the vanishing of the components

Habn = 0 , a, b = +,−, α, ᾱ , n = 3, 4 (10.5)

of the NS⊗NS three-form field strength. The Lie algebra h is not arbitrary but rather

constrained by supersymmetry. In particular, the structure constants satisfy the conditions

Hᾱβ
β + H−+ᾱ = 0 , H−12̄ = 0 , H−11̄ = H−22̄ ,

H+αβ = 0 , H+α
α = 0 , α, β = 1, 2 , (10.6)

of the dilatino Killing spinor equation. Observe that the structure constants of Sl(2, R) ×
SU(2) whose lie algebras are spanned by sl(2, R) = R < e−, e+, e1 = 1√

2
(e1 + e1̄) > and

su(2) = R < e2, e2̄, e6 = 1
i
√

2
(e1̄ − e1) > satisfy these conditions provided one identifies

their structure constants as in the first condition of (10.6). The remaining conditions of

the dilatino Killing spinor equation, apart from those involving the dilaton, imply that

LXω2 = 0 , LY ω2 = 0 , LZαω2 = 0 , LZᾱω2 = 0 , (10.7)

and

LXχ2 = 0 , LY χ2 = 0 , LZαχ2 = 0 , LZᾱχ2 = 0 . (10.8)

The conditions involving the dilaton imply that Φ is invariant under the action of h on the

spacetime and that ∂nΦ is related to the torsion H.

The conditions on the geometry of supersymmetric backgrounds with SU(2) invariant

spinors can be summarized as follows: The gravitino Killing spinor equation gives

Ω̂A,ab = 0 , Ω̂A,aB = 0 , Ω̂A,np = 0 , Ω̂A,n
n = 0 , a = −,+, α, ᾱ , (10.9)

and the dilatino Killing spinor equation gives

∂aΦ = 0 , ∂n̄Φ − 1

2
Hn̄p

p = 0 ,

Hanp = 0 , Han
n = 0 , Hnab = 0

Hᾱβ
β + H−+ᾱ = 0 , H−12̄ = 0 ,

H−11̄ = H−22̄ , H+αβ = 0 , H+α
α = 0 . (10.10)

This concludes the discussion of the supersymmetry conditions.

– 54 –



J
H
E
P
0
2
(
2
0
0
6
)
0
6
3

Combining the conditions of the gravitino and dilatino Killing spinor equations, we

find that the Levi-Civita connection of the spacetime satisfies the conditions,

Ωk,ab = 0 , 2Ω[a,bc] = Habc , Ω70

a,bc = 0 ,

2Ωa,n
n = Han

n = 0 , 2Ωp,n
n = Hpn

n = −2∂pΦ ,

Ωa,bn = 0 , Ωn,pa = 0 , 2Ωn̄,ap = Hn̄ap ,

Ωn,pm = 0 , 2Ωn̄,mq = Hn̄mq , Ωa,pn = 0 , (10.11)

which we have expressed in terms of so(5, 1) ⊕ su(2) representations. Some of above con-

ditions can been seen as expressing the flux H in terms of the Levi-Civita connection. In

this case, we shall show that H is determined by the metric and the form spinor bilinears.

10.1.3 Solution of the Killing spinor equations

As for the supersymmetric backgrounds with G2- and SU(3)-invariant spinors, the space-

time M of backgrounds with SU(2)-invariant spinors can be interpreted as a principal

bundle M = P (H, B, π) equipped with a connection λ, where H is a Lorentzian group

with Lie algebra h spanned by the six parallel vector fields and π is the projection of the

principal bundle. Unlike the G2 and SU(3) cases, the group H is not arbitrary but its

structure constants satisfy the (10.6). The connection is λa = ea. The Cartan structure

equations for λ can be found by considering the torsion free conditions of the frame. Us-

ing the relations (10.9) and (10.10), the torsion free conditions of the frame eA can be

written as

dea =
1

2
Ha

bce
b ∧ ec + Ha

np̄ en ∧ ep̄ ,

den = −Ωa,
n

pe
a ∧ ep +

1

2
Hn

pae
p ∧ ea − Ωp̄,

n
mep̄ ∧ em

− Ωp,
n

m̄ep ∧ em̄ − Ωp,
n

mep ∧ em . (10.12)

The first condition is interpreted as the Cartan structure equation and so the curvature of

the connection λ is

Fa
ij =

1

2
Ha

ij , i, j = 3, 4, 8, 9 . (10.13)

The conditions (10.10) imply that Fa is self-dual, i.e. it takes values in the su(2) ⊂ so(4).

The metric of the spacetime and the torsion H in terms of principal bundle data can be

written as

ds2 = ηabλ
aλb + δije

iej ,

H =
1

3
ηabλ

a ∧ dλb +
2

3
ηabλ

a ∧ Fb + π∗H̃ . (10.14)

It remains to investigate the geometry of the four-dimensional base space B. As in the

G2 and SU(3) cases, the base space B is a Riemannian manifold equipped with a metric

ds̃2 and a three-form H̃, and so with a metric connection ˆ̃∇ with three-form torsion. In

addition, since both ω2 and χ2 are invariant under H, the base space B is also equipped

with two two-form ω̃2 and χ̃2. Both ω̃2 and χ̃2 are parallel with respect to ˆ̃∇. The almost
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complex structure Ĩ associated with the pair (ds̃2, ω̃2) is integrable, and χ̃ is (2,0) with

respect Ĩ. Therefore, B is a conformally balanced HKT manifold. The conformal balance

condition follows from the second equation in (10.10) and θ̃ = 2dΦ, where θ̃ is the Lee form

of ω̃2 defined as in (6.22).

As in the SU(3) case, the spacetime admits various distributions spanned by the

one-forms {en, en̄}, {en, e−, e1, e2} and {ea, en}. These are integrable distributions of co-

dimensions six, five and two, respectively. The first integrable distribution is that of the

principal bundle structure that we have already investigated. To show that {en, e−, e1, e2}
span an integrable distribution, one also needs the conditions (10.6) on the structure con-

stants Habc imposed by supersymmetry. Note that there is another co-dimension five

distribution spanned by the one-forms {en̄, e+, e1̄, e2}. Both codimension five distribu-

tions imply that the spacetime admits a certain “Lorentzian” complex structure, i.e. M

is a “Lorentzian-holomorphic” space, in two different ways. The distribution spanned by

{ea, ek} is related to the property of B to be a complex manifold.

To summarize the geometry of supersymmetric backgrounds with SU(2)-invariant

spinors, we have found that the spacetime is a principal bundle P (H, B, π) equipped with

a connection λ. The structure constants of the six-dimensional group H are constrained by

(10.6). The curvature of λ is a self-dual two-form. The base space is a four-dimensional,

conformally balanced HKT manifold. The metric and torsion are given in (10.14) and the

dilaton Φ is a function of B.

10.1.4 Field equations and examples

The integrability conditions of the Killing spinor equations imply that all field equations

are satisfied provided that BH = BF = 0 as in the previous cases with compact stability

subgroups. In addition, one can show that dH = F ∧F +π∗dH̃ . This expression is similar

to those in the G2 and SU(3) cases. If H is abelian, it is straightforward to introduce

coordinates and write explicit expressions for the metric and torsion. Since we have done

this for the SU(3) case and the analysis is very similar, we shall not repeat the various

formulae here. One can also easily construct the examples with non-vanishing null rotation

which have also been considered in [47]. An example of a background with SU(2)-invariant

spinors and eight supersymmetries is the NS5-brane [8].

10.2 Backgrounds with R
8-invariant spinors

10.2.1 Supersymmetry conditions

As we have already explained, the Killing spinors can be chosen as

ε1 = 1 + e1234 , ε2 = i(1 − e1234) , ε3 = e12 − e34 , ε4 = i(e12 + e34) ,

ε5 = e13 + e24 , ε6 = i(e13 − e24) , ε7 = e23 − e14 , ε8 = i(e23 + e14) . (10.15)

Observe that the above spinors can also be thought of as spanning the real chiral represen-

tation ∆+
8

of Spin(8). The gravitino Killing spinor equation implies that the connection

∇̂ takes values in R
8, i.e. that

Ω̂A,ij = , Ω̂A,+B = 0 , i, j = 1, 2, 3, 4 , 6, 7, 8, 9 (10.16)
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i.e. the only non-vanishing components of the connection are Ω̂A,−i. The dilatino Killing

spinor equation in addition implies that

∂+Φ = 0 , ∂iΦ − 1

2
H−+i = 0 ,

Hijk = 0 , H+ij = 0 . (10.17)

We shall next investigate the conditions on the geometry of spacetime.

10.2.2 Solution of the Killing spinor equations

It is clear from (10.16) that the connection Ω̂ takes values in R
8 and so hol(∇̂) ⊆ R

8. The

forms of the Killing spinor bilinears can be written as

α = e− ∧ φ , φ ∈ Λev+(R8) , (10.18)

where Λev+(R8) = Λ0(R8) ⊕ Λ2(R8) ⊕ Λ4+(R8) and Λ4+(R8) denotes the subspace of self-

dual four-forms and R
8 = R < e1, . . . , e4, e6, . . . , e9 >. As in the previous cases, the last

condition in (10.16) implies that κ = e− is a parallel null one-form associated with a

Killing vector field X. In addition the last condition in (10.17) implies that X preserves

the R
8-structure, i.e.

LXα = 0 , (10.19)

where α is any form Killing spinor bilinear.

The only non-vanishing components of H are H−ij and H−+i. Unlike previous K nR
8

cases, H is determined in terms of the Levi-Civita connection and the dilaton. In particular,

the conditions of the dilatino Killing spinor equation (10.17) express H−+i in terms of Φ

and the condition Ω̂−,ij = 0 of the gravitino Killing spinor equation gives H−ij = 2Ω−,ij.

One can also adapt coordinates along the parallel vector field X, X = ∂/∂u, and write the

metric and torsion as

ds2 = 2(dv + mIdyI)(du + V dv + nIdyI) + γIJdyIdyJ

H = e+ ∧ dκ + Ω−,ije
− ∧ ei ∧ ej . (10.20)

Next consider the torsion free conditions for the frame (e−, e+, ei) which we can introduce

as in (5.23). In particular, the torsion free conditions for e− and ei imply that there are

functions m = m(v, y) and ei = ei(v, y) such that

mI = ∂Im , ei
J = ∂Jei(v, y) . (10.21)

In addition since dκ = dm, we have from the dilatino Killing spinor equation that

∂I(2Φ + ∂vm) − 2mI∂vΦ = 0 . (10.22)

If the rotation of X does not vanish, dκ = de− 6= 0, it is not apparent that there is

a diffeomorphism which preserves the form of the metric in (10.20) and transforms the

“transverse” metric γIJdyIdyJ to that of flat space. However if dκ = de− = 0, the dilaton
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Φ = Φ(v), and one can perform the diffeomorphism u = u, v = v and yi = ei(v, yI) which

preserves the form of the metric in (10.20) and transforms the transverse part of the metric

to that of flat space. In such a case, the solution of the Killing spinor equations can be

written as

ds2 = 2dv(du + V dv + nidyi) + δijdyidyj ,

H = Ω−,ijdv ∧ dyi ∧ dyj , Φ = Φ(v) . (10.23)

As in all previous K n R
8 cases, the spacetime can be interpreted as a two param-

eter family of an eight-dimensional manifold. This can be done by introducing a frame

(E−, E+, Ei) as in (5.31). If the rotation of X does not vanish, dκ 6= 0, then the deformed

submanifold B although it admits a {1}-structure it is not compatible with the induced
ˆ̃∇ connection. However, if the rotation vanishes, then B is locally isomorphic to R

8 as we

have shown in (10.23).

10.2.3 Field equations and examples

One can show using the integrability conditions of the Killing spinor equations that the

only field equations that need to be imposed in addition to the Bianchi identities BH =

0, BF = 0 are E−− = 0, LH−A = 0 and LF− = 0. This is similar to all the previous

K n R
8 backgrounds as might have been expected.

An example of a background with R
8-invariant spinors and N = 8 supersymmetries is

that of the fundamental string solution of [52]. The non-vanishing fields are

ds2 = 2h−1dxdy + ds2(R8) ,

H = −dx ∧ dy ∧ dh−1 ,

e2Φ = h−1 , (10.24)

where h is a harmonic function on R
8. To see this, one performs the coordinate transfor-

mation

u = x , v = h−1y , (10.25)

and the metric and torsion can be rewritten as

ds2 = 2(dv + vh−1dh)du + ds2(R8) ,

H = h−1du ∧ dv ∧ dh = du ∧ d(vh−1dh) . (10.26)

Setting e− = dv + vh−1dh and e+ = du, the metric and torsion have the form of (10.20).

In particular observe that (10.22) is satisfied.

11. Parallelizable string backgrounds

As we have mentioned in the introduction, if the Killing spinors have stability subgroup

{1}, then the background is parallelizable with respect to the ∇̂ connection, i.e. R̂ = 0.

In addition the gauge connection is flat, i.e. F = 0. In this section, we shall show that
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backgrounds for with R̂ = 0 are group manifolds provided that H is closed at the 0-th order

in α′. For this, we write the expression for the R̂ curvature in terms of the Riemannian

curvature R as

R̂MN,RS = RMN,RS−
1

2
∇MHNRS +

1

2
∇NHMRS +

1

4
HRMLHL

NS−
1

4
HRNLHL

MS , (11.1)

where M,N, . . . = 0, . . . , 9 are coordinate indices. Skew-symmetrizing in all four indices

and using dH = 0, we find that

HL[MNHL
RS] = 0 (11.2)

which can be rewritten as

HLM [NHL
RS] = 0 . (11.3)

Skew-symmetrizing (11.1) in the N,R, S indices, we get that

−∇MHNRS + ∇[NHRS]M = 0 (11.4)

which together with the closure of H gives

∇MHNRS = 0 . (11.5)

Therefore the spacetime admits a parallel three-form which satisfies the Jacobi identity

and so the spacetime is a ten-dimensional Lorentzian group manifold. Of course Lorentzian

group manifolds admit sixteen parallel spinors with respect to the ∇̂ which can be identified

with the left-invariant connection. In addition if we demand that the parallel spinors are

also Killing, then the background is maximally supersymmetric and so the spacetime is

locally isometric to Minkowski space [34].

The field equations impose additional conditions on backgrounds for which R̂ = 0. In

particular, we find that the gravitino and two-form gauge potential field equations imply

that

∇M∂NΦ = 0 (11.6)

and

∂MΦgMNHNRS = 0 . (11.7)

In the case that Φ is constant, the dilatino Killing spinor equation becomes

HMNRΓMNRε = 0 . (11.8)

This gives, after using the Jacobi equation, that

HMNRHMNR = 0 . (11.9)

Therefore H is null. Since H is null, the spacetime admits at least eight Killing spinors.
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Next let us turn to the case that Φ is not constant. In such case, (11.6) implies that

XM = gMN∂NΦ is parallel. There are two cases to consider, either X2 = 0, i.e. X is null,

or X2 = const and so X is either timelike or spacelike. In both cases, using (11.7) and the

Jacobi identity for H, we find that the dilatino Killing spinor equation implies that

XMXM − 1

24
HMNRHMNR = 0 . (11.10)

Therefore if X is null, then H is also null and the spacetime admits at least eight Killing

spinors which satisfy dΦ ε = 0. If X is time-like, the condition (11.7), also written as iXH =

0, implies that H is spacelike H2 > 0 and so (11.10) cannot be satisfied. There are no

parallelizable supersymmetric backgrounds, R̂ = 0, for which the dilaton can be identified

with a time coordinate on the spacetime. The only remaining possibility is X space-like.

Such supersymmetric backgrounds are known to exist like for example R
5,1×U(1)×SU(2).

The dilaton is identified with the coordinate along the space-like U(1) direction.

12. Common sector of type II supergravities

12.1 Supersymmetric backgrounds

The Killing spinor equations of the common sector of type II supergravities are

∇±ε± = 0 ,

(ΓM∂MΦ ∓ 1

12
ΓMNP HMNP )ε± = 0 , (12.1)

where ∇± = ∇± 1
2H and ε± are Majorana-Weyl spinors of the same (IIB) or opposite (IIA)

chiralities. The field equations are the same as those of the metric and NS⊗NS two-form

gauge potential of the heterotic string. In addition, dH = 0.

The Killing spinor equations of the common sector resemble those of the gravitino

and dilatino of the heterotic supergravity. Observe for example that ∇+ = ∇̂. The

common sector of type II supergravities is a consistent truncation of type II supergravities.

Therefore it can be thought as a special case of eleven-dimensional and IIB supergravities.

Because of this, we shall not investigate the Killing spinor equations in detail. Instead,

we shall focus on some properties of the common sector supersymmetric backgrounds that

follow from those of the supersymmetric backgrounds of the heterotic string that we have

presented. In particular, we shall examine the common sector of IIB supergravity in which

case ε± are both positive chirality spinors. It is worth mentioning that the supersymmetric

configurations of the common sector of IIA supergravity should be treated separately from

those of IIB supergravity because there are several differences. To mention one, the spinors

1 + e1234 and e1 − e234 of IIA supergravity have stability subgroup G2 n R
8 in Spin(9, 1).

As we have seen IIB supergravity does not admit spinors with stability subgroup G2 n R
8.

Therefore, it is expected that some of the geometries that appear in the common sector

IIA supergravity are different from those that appear in IIB.
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The relevant spinor bundle of the IIB common sector is S+ ⊕ S+ and the gravitino

Killing spinor equation is a parallel transport equation for the connection ∇+ ⊕∇−. Thus

the gravitino Killing spinor equations are associated with a Spin(9, 1)×Spin(9, 1) connec-

tion. However, the gauge group that preserves the Killing spinor equations is the same as

in the heterotic case, i.e. it is Spin(9, 1). This is the main difference between the Killing

spinor equations of the common sector and those of the heterotic string. Because the gauge

group is the proper diagonal subgroup of Spin(9, 1) × Spin(9, 1), it has many more orbits

in the space of spinors than those of the heterotic string. As a result there are many more

cases to consider.

The Killing spinors ε of the common sector can be written as η1⊕η2. To proceed, let G+

and G− be the stability subgroups of the parallel spinors η⊕0 and 0⊕η, respectively, and G

be the stability subgroup of all parallel spinors, G ⊆ G+∩G−. It is again the case that the

holonomy of the ∇± connections should be a subgroup of the stability subgroups G± of the

parallel spinors, i.e. hol(∇±) ⊆ G±. The general strategy to analyze the supersymmetric

backgrounds of the common sector is to first choose the parallel spinors of the type η⊕0 as

in the heterotic case and then use the residual gauge symmetry G+ to simplify the Killing

spinors of the type 0⊕η, or vice versa. Without loss of generality, we may choose the Killing

spinors ε ⊕ 0 as those of the heterotic supergravity. If one requires that there are parallel

spinors with stability subgroup G+ = {1} or G− = {1}, then either the curvature R+ = 0

or R− = 0. In such a case, the spacetime is a metric Lorentzian group. This follows from

the results of the previous section. If both G+ = G− = {1}, then the Riemann curvature

of the Levi-Civita connection vanishes, R = 0, and the spacetime is locally isometric to

Minkowski space.

On the other hand, if either ∇+ or ∇− does not admit parallel spinors, then the analysis

of the common sector reduces to that of the heterotic string for the connection with torsion

that admits parallel spinors. In this case the heterotic supersymmetric backgrounds are

“embedded” in the common sector.

It turns out that many common sector supersymmetric backgrounds admit a Killing

spinor of the type spinor ε = η ⊕ η, i.e. η is parallel with respect to both ∇+ and ∇−

connections. If this is the case, then η is also parallel with respect to the Levi-Civita

connection. In particular, the Killing spinor equations imply that that

∇η = 0 , HABCΓBCη = 0 ,

ΓA∂AΦη = 0 . (12.2)

The last condition follows from the dilatino Killing spinor equations. Since the stability

subgroup of a single spinor in Spin(9, 1) is Spin(7) n R
8, G+ = G− = G = Spin(7) n R

8.

So, hol(∇) ⊆ Spin(7) n R
8, i.e. the holonomy of the Levi-Civita connection is contained

in Spin(7) n R
8. Furthermore, the gauge symmetry of the Killing spinor equations can be

used to set ε = 1 + e1234. As a result, one can use the results of N = 1 heterotic string

backgrounds to show that

ΩA,+B = 0 , ΩA,α
α = 0 , ΩA,αβ =

1

2
ΩA,γδεαβ

γδ ,
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HA+B = 0 , HAα
α = 0 , HAαβ =

1

2
HAγδεαβ

γδ ,

∂+Φ = ∂αΦ = 0 , α, β = 1, 2, 3, 4 . (12.3)

These imply that hol(∇) ⊆ Spin(7) n R
8, as we have already mentioned, H−ij ∈ Λ2

21
and

Hijk = 0. The rotation of the associated null Killing vector field vanishes. As a result, the

spacetime admits Penrose coordinates. One can also see that the Lorentzian deformation

family is that of a Spin(7) manifold, i.e. the Levi-Civita connection of B has holonomy

contained in Spin(7).

Next, we shall use the general results above to investigate common sector backgrounds

with one and two supersymmetries. For N = 1, either ∇+ or ∇− admits a parallel spinor

ε. This implies that either hol(∇+) ⊆ Spin(7) n R
8 or hol(∇−) ⊆ Spin(7) n R

8. Suppose

that hol(∇+) admits the parallel spinor ε. Since ε is Killing by assumption, it also solves

the dilatino Killing spinor equation. The geometry of spacetime is that described in the

case of N = 1 heterotic string backgrounds. The connection ∇− may not admit parallel

spinors, i.e. the holonomy of ∇− is not contained in Spin(7) n R
8. However, if it admits

parallel spinors, they do not solve the dilatino Killing spinor equation.

To examine backgrounds with two supersymmetries, we again use the results we have

derived in the context of heterotic string. There are several cases to consider. In the first

case both Killing spinors are parallel with respect to either the ∇+ or ∇− connection.

Without loss of generality, we can assume that both spinors are parallel with respect

to the ∇+ connection. There are two such cases to consider with stability subgroups

G = G+ = SU(4) n R
8 and G = G+ = G2. The geometry of the spacetime is that of

the N = 2 heterotic string backgrounds. Next suppose that one of the Killing spinors is

parallel with respect to the ∇+ connection and the other is parallel with respect to the

∇− connection. In this case G+ = G− = Spin(7) n R
8 and so the holonomy of both ∇±

connections is contained in Spin(7)nR
8. The first Killing spinor can always to be chosen as

ε1 = f(1+e1234). In such a case, one can show that the second Killing spinor can be chosen

either as ε2 = g1(1 + e1234) or ε2 = g1(1 + e1234) + ig2(1− e1234) or ε2 = g(e15 + e2345). The

argument is similar to the one we have used for the heterotic string backgrounds with two

supersymmetries. The case for which both Killing spinors point to the same direction has

already been investigated above and the supersymmetry conditions have been summarized

in (12.3). The supersymmetry conditions for the remaining two cases can also be read

from those of N = 2 heterotic string backgrounds. However for the second spinor, one

has to alter appropriately the sign of the terms containing the flux H in the Killing spinor

equations. The analysis is routine and we shall not present the results here. It is apparent

though that one must consider many more cases of supersymmetric backgrounds in context

of the common sector than those that appear in heterotic supergravity. In the table 12.1 we

summarize the stability subgroups of the spinors of N = 2 IIB common sector backgrounds.

The parallel forms of string theory backgrounds are associated with conserved cur-

rents of the worldvolume action which described the propagation of (super)strings in such

backgrounds [53]. Thus for any of the parallel forms we have presented in the super-

symmetric heterotic and common sector backgrounds, there is an associated conserved

current. In particular, we have shown that all supersymmetric heterotic and common sec-
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N = 2 G+ G− G

SU(4) n R
8 - SU(4) n R

8

G2 - G2

Spin(7) n R
8 Spin(7) n R

8 Spin(7) n R
8

Spin(7) n R
8 Spin(7) n R

8 SU(4) n R
8

Spin(7) n R
8 Spin(7) n R

8 G2

Table 3: There are five classes of IIB common sector backgrounds with two supersymmetries.

These are denoted with the stability subgroups G+, G− and G of the Killing spinors. In all cases

hol(∇±) ⊆ G±. The entries − denote the cases for which the sector associated with the ∇−

connection does not admit Killing spinors.

tor backgrounds admit at least one parallel null vector field. Without loss of generality

let ∇+κ = 0, ∇+ = ∇̂. Then the bosonic string with equations of motion ∇+
+∂−Y M = 0,

where Y is the embedding map of the string worldvolume into spacetime and σ± are

lightcone worldvolume coordinates, has a conserve current κM∂−Y M , ∂+(κM∂−Y M ) = 0.

Therefore κM∂−Y M = f(σ−). It is known that the bosonic string action is invariant under

the conformal transformations δY M = a(σ+)∂+Y M + b(σ−)∂−Y M , where a, b are the in-

finitesimal parameters. It is easy to see that choosing f(σ−) to be constant, one can gauge

fix the conformal transformations associated with the parameter b(σ−). Similarly, if the

one-form κ′ is parallel with respect to the ∇− connection, the current κ′
M∂+Y M is con-

served ∂−(κ′
M∂+Y M ) = 0 and this can be used to gauge fix the conformal transformations

associated with the infinitesimal parameter a(σ+).

13. Conclusions

We have specified the geometry of the supersymmetric heterotic string backgrounds (in

the lowest order in α′) for which all the parallel spinors of the connection ∇̂ with torsion

given by the NS ⊗NS three-form field strength are also Killing. We have also determined

the field equations that are implied by the Killing spinor equations in all cases. We have

found that there are two classes of backgrounds the null and timelike. The Killing spinors

of null backgrounds are chiral which respect to a suitable Spin(8) chirality projection or

equivalently admit a single null ∇̂-parallel vector field. The stability subgroups of the

Killing spinors in Spin(9, 1) are K n R
8 for K = Spin(7) (N = 1), K = SU(4) (N = 2),

K = Sp(2) (N = 3), K = SU(2) × SU(2) (N = 4) and K = {1} (N = 8), where N

denotes the number of Killing spinors. We have shown that the spacetime is a suitable

two-parameter Lorentzian family of an eight-dimensional manifold B with a K-structure.

If the rotation of the null vector field vanishes, then B admits a metric connection, ˆ̃∇
with skew-symmetric torsion on B compatible with an integrable conformally balanced

K-structure on B, and so in particular hol( ˆ̃∇) ⊆ K.

The Killing spinors of timelike backgrounds are not chiral which respect to a suitable

Spin(8) chirality projection or equivalently admit a time-like ∇̂-parallel vector field. The

stability subgroups of the Killing spinors in Spin(9, 1) are G2 (N = 2), SU(3) (N = 4),
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SU(2) (N = 8) and {1} (N=16). Assuming that the vector fields constructed from spinor

bilinears close under Lie brackets, we have shown that the spacetime is locally a principal

bundle, P (H, B, π), whose fibre directions are the orbits of the parallel vector fields and the

base space is a manifold with a G2 (n = 7) , SUc(3) (n = 6) and SU(2) (n = 4)-structure,

respectively, where n = dimB. We have described the geometry of the spacetime of all

supersymmetric backgrounds in terms of principal bundle data.

We also applied some of our results to the supersymmetric configurations of the com-

mon sector of type II supergravities. We have found that there are some differences between

the properties of IIA and IIB supersymmetric common sector backgrounds. We also deter-

mined the conditions for the common sector IIB backgrounds with two supersymmetries.

A consequence of our results is that all supersymmetric common sector and heterotic string

backgrounds admit a null ∇̂-parallel vector field. This may be used to lightcone gauge fix

the (super)conformal gauge symmetry of strings propagating in such backgrounds.

We have not investigated in detail the timelike backgrounds for which the set of the

vector fields constructed from spinor bilinears does not close under Lie brackets. However,

we have shown that the commutator vector field [X,Y ] of any two ∇̂-parallel vectors X,Y is

also ∇̂-parallel. Therefore there are several possible geometric structures for the spacetime

ranging from a principal bundle, which we have mentioned above, to a Lorentzian Lie

group.

It is well-known the field equations of the heterotic string contain higher curvature

correction terms. These modify the field equations of the supergravity theory that we have

investigated. It has been shown in [10] that for certain supersymmetric backgrounds with

SU(3)-invariant spinors, these higher order curvature correction terms are necessary for

consistency with the heterotic anomaly cancelation mechanism. It would be of interest to

find whether this persists to all supersymmetric backgrounds that we have analyzed.

Another class of supersymmetric heterotic backgrounds that we have not investigated

are those for which the number of Killing spinors is less than the number of ∇̂-parallel

spinors, i.e. some of the ∇̂-parallel spinors do not solve the dilatino Killing spinor equation.

It is known such supersymmetric backgrounds exist. However, the analysis we have done

for the gravitino Killing spinor equation in this paper still applies to this class of models.

In particular, one can determine the stability subgroup in Spin(9, 1) of the parallel spinors

and construct the spacetime form spinor bilinears. Taking a basis in the space of parallel

spinors {ηi}, one then can write the Killing spinors as εr = friηi and substitute them in the

dilatino Killing spinors equation. Using the results we have collected in the appendices,

one can derive linear systems similar to those which have been found in the context of IIB

supergravity [31]. These linear systems can be solved to find the Killing spinors of such

backgrounds.

Acknowledgments

G.P. thanks the Erwin Schrödinger International Institute for hospitality during the “Ge-

ometry of pseudo-Riemannian manifolds with applications to physics” programme. U.G.

has a postdoctoral fellowship funded by the Research Foundation K.U. Leuven. In ad-

– 64 –



J
H
E
P
0
2
(
2
0
0
6
)
0
6
3

dition U.G. would like to acknowledge the support of the Swedish Research Council and

the PPARC grant PPA/G/O/2002/00475 as part of this work was done while still being a

postdoc at King’s College.

A. Spinors and forms

A.1 Spinors from forms

Spinors can be described in terms of forms. This construction is explained in, e.g. [54, 55]

and it has been used in [29] in the context of manifolds with special holonomy. This

description has been applied to the the Majorana-Weyl spinors of Spin(9, 1) in [38]. Here

for completeness, we shall briefly summarize some of the aspects of this construction.

Consider the Euclidean space U = R < e1, . . . , e5 >, where e1, . . . , e5 is an orthonormal

basis. The space of Dirac spinors of Spin(9, 1) is ∆c = Λ∗(U ⊗ C). The gamma matrices

are represented on ∆c as

Γ0η = −e5 ∧ η + e5yη , Γ5η = e5 ∧ η + e5yη ,

Γiη = ei ∧ η + eiyη , i = 1, . . . , 4

Γ5+iη = iei ∧ η − ieiyη . (A.1)

∆c decomposes into two complex chiral representations according to the degree of the form

∆+
c = Λeven(U ⊗ C) and ∆−

c = Λodd(U ⊗ C). These are the complex Weyl representations

of Spin(9, 1).

The gamma matrices {Γi; i = 1, . . . , 9} are Hermitian and Γ0 is anti-Hermitian with

respect to the inner product

< zaea, w
beb >=

5
∑

a=1

(za)∗wa , (A.2)

on U ⊗ C and then extended to ∆c, where (za)∗ is the standard complex conjugate of za.

The above gamma matrices satisfy the Clifford algebra relations ΓAΓB + ΓBΓA = 2ηAB

with respect to the Lorentzian inner product as expected.

A Spin(9, 1) Majorana inner product is

B(η, θ) =< B(η∗), θ > , (A.3)

where the map denoted with the same symbol B = Γ06789. Observe that this Majorana

inner product is skew-symmetric B(η, θ) = −B(θ, η). B pairs the ∆+
c and ∆−

c representa-

tions. Moreover, both ∆+
c and ∆−

c are Lagrangian with respect to B, i.e. B restricted to

either ∆+
c or ∆−

c vanishes. The Spin(9, 1) Dirac inner product is

D(η, θ) =< Γ0η, θ > . (A.4)

It is well-known that Spin(9, 1) admits two inequivalent Majorana-Weyl representa-

tions. So it remains to impose the Majorana condition on the complex Weyl representations

we have constructed above. The Majorana condition can be chosen as

η∗ = −Γ0B(η) , (A.5)
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or equivalently

η∗ = Γ6789η . (A.6)

Observe that this reality condition maps forms of even (odd)-degree to forms of even (odd)-

degree and selects real subspaces ∆+
16 and ∆−

16 in ∆+
c and ∆−

c , respectively. These subspaces

are the modules of the two inequivalent Majorana-Weyl representations of Spin(9, 1). For

example 1 and e1234 are complex Weyl spinors while 1+e1234 and i1− ie1234 are Majorana-

Weyl, i.e. real chiral spinors.

The spacetime form bilinears associated with the spinors η, θ. are given as

α(η, θ) =
1

k!
B(η,ΓA1...Ak

θ)eA1 ∧ . . . ∧ eAk , k = 0, . . . , 9 . (A.7)

If both spinors are of the same chirality, then it is sufficient to compute the forms up to

degree k ≤ 5. This is because the forms with degrees k ≥ 6 are related to those with degrees

k ≤ 5 with a Hodge duality operation. The forms of middle dimension are either self-dual

or anti-self-dual. If η, θ ∈ ∆+
16

, then the non-vanishing forms are one-forms, three-forms

and five-forms. In particular, one finds that α(η, θ) = α(θ, η) for one- and five-forms, and

α(η, θ) = −α(θ, η) for three-forms.

In many computations that follow, it is convenient to use another basis in the space of

spinors ∆c. This is an oscillator basis given in terms of creation and annihilation operators.

For this, first write

Γᾱ =
1√
2
(Γα + iΓα+5) , Γ± =

1√
2
(Γ5 ± Γ0) , Γα =

1√
2
(Γα − iΓα+5) . (A.8)

Observe that the Clifford algebra relations in the above basis are ΓAΓB + ΓBΓA = 2gAB ,

where the non-vanishing components of the metric are gαβ̄ = δαβ̄ , g+− = 1. In addition

we define ΓB = gBAΓA. The 1 spinor is a Clifford vacuum, Γᾱ1 = Γ+1 = 0 and the

representation ∆c can be constructed by acting on 1 with the creation operators Γᾱ,Γ+ or

equivalently any spinor can be written as

η =

5
∑

k=0

1

k!
φā1...āk

Γᾱ1...ᾱk1 , ā = ᾱ,+ . (A.9)

This is another manifestation of the relation between spinors and forms.

We conclude this section with our form conventions. A k-form α is denoted as

α = 1
k!αi1...ikei1 ∧ . . . ∧ eik and so the components of the exterior derivative dα of α are

dαi1...ik = (k + 1)∂[i1αi2...ik+1]. The inner product of two k-forms α and β is (α, β) =
1
k!αi1...ikβj1...jk

gi1j1 . . . gikjk , where g is the manifold metric. The Hodge dual ∗α of a k-

form α is defined as α∧β = (∗α, β) dvol, where β is a (n−k)-form and dvol is the volume of

the n-dimensional manifold. This gives that ∗αik+1...in = 1
k!αj1...jk

εj1...jk
ik+1...in . The inner

derivation iIα of a k-form α with an endomorphism I is iIα = 1
(k−1)!I

j
i1αji2...ik ei1∧. . .∧eik .

A.2 Spacetime forms from spinors

A.2.1 The Spin(7) n R
8- and SU(4) n R

8-invariant spinors

To compute the spacetime forms that are associated with the Spin(7)nR
8- and SU(4)nR

8-

invariant spinors, it is sufficient to know the spacetime forms associated with the 1 and e1234
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spinors. This is because as we have seen 1 and e1234 span the Spin(7)nR
8- and SU(4)nR

8-

invariant spinors. As a result, the spacetime forms associated with the Spin(7) n R
8- and

SU(4) n R
8-invariant spinors are linear combinations of the forms associated with the 1

and e1234 spinors. Using (A.7), it is easy to find that the forms associated with the 1 and

e1234 spinors are the following: A one-form

κ(e1234, 1) = e0 − e5 , (A.10)

a three-form

ξ(e1234, 1) = −i(e0 − e5) ∧ ω , (A.11)

and five-forms

τ(1, 1) = (e0 − e5) ∧ χ , τ(e1234, e1234) = (e0 − e5) ∧ χ∗ ,

τ(e1234, 1) = −1

2
(e0 − e5) ∧ ω ∧ ω , (A.12)

where

ω = −(e1 ∧ e6 + e2 ∧ e7 + e3 ∧ e8 + e4 ∧ e9) ,

χ = (e1 + ie6) ∧ (e2 + ie7) ∧ (e3 + ie8) ∧ (e4 + ie9) . (A.13)

A.2.2 The G2-invariant spinors

The G2 invariant spinors are linear combinations of 1, e1234, e15 and e2345 spinors. The

spacetime form bilinears associated with 1 and e1234 have been given in the previous section.

Here we shall compute the spacetime forms associated with the rest of the spinor bilinears.

In particular, we have the one-forms

κ(1, e2345) = −e1 − ie6 , κ(e1234, e15) = −e1 + ie6 ,

κ(e2345, e15) = e0 + e5 , (A.14)

the three-forms

ξ(1, e15) = χ̂ ,

ξ(1, e2345) = −i(e1 + ie6) ∧ ω̂ + (e1 + ie6) ∧ e0 ∧ e5 ,

ξ(e1234, e15) = i(e1 − ie6) ∧ ω̂ + (e1 − ie6) ∧ e0 ∧ e5 ,

ξ(e1234, e2345) = χ̂∗ ,

ξ(e2345, e15) = −i(e0 + e5) ∧ ω̂ − i(e0 + e5) ∧ e1 ∧ e6 , (A.15)

where

ω̂ = −(e2 ∧ e7 + e3 ∧ e8 + e4 ∧ e9) ,

χ̂ = (e2 + ie7) ∧ (e3 + ie8) ∧ (e4 + ie9) , (A.16)

and the five-forms

τ(1, e15) = [−e0 ∧ e5 − ie1 ∧ e6] ∧ χ̂ ,
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τ(1, e2345) = (e1 + ie6) ∧ [
1

2
ω̂ ∧ ω̂ + iω̂ ∧ e0 ∧ e5] ,

τ(e1234, e15) = (e1 − ie6) ∧ [
1

2
ω̂ ∧ ω̂ − iω̂ ∧ e0 ∧ e5] ,

τ(e1234, e2345) = [−e0 ∧ e5 + ie1 ∧ e6] ∧ χ̂∗ ,

τ(e2345, e15) = (e0 + e5) ∧ [−1

2
ω̂ ∧ ω̂ − ω̂ ∧ e1 ∧ e6] ,

τ(e15, e15) = −(e0 + e5) ∧ (e1 − ie6) ∧ χ̂ ,

τ(e2345, e2345) = −(e0 + e5) ∧ (e1 + ie6) ∧ χ̂∗ . (A.17)

A.2.3 The N = 3 case

The Sp(2) invariant spinors are linear combinations of 1, e1234, e12 and e34. The spinor

bilinears of 1 and e1234 have been computed already. Here, we shall give remaining forms.

For this, let us set

ω1 = −(e1 ∧ e6 + e2 ∧ e7), ω2 = −(e3 ∧ e8 + e4 ∧ e9) ,

χ1 =
(

e1 + ie6
)

∧
(

e2 + ie7
)

, χ2 =
(

e3 + ie8
)

∧
(

e4 + ie9
)

. (A.18)

Note that

ω = ω1 + ω2, χ = χ1 ∧ χ2 . (A.19)

Then we find, the one-forms

κ(e12, e34) = κ(e34, e12) = −(e0 − e5) , (A.20)

the three-forms,

ξ(e12, 1) = −(e0 − e5) ∧ χ2 ,

ξ(e34, 1) = −(e0 − e5) ∧ χ1 ,

ξ(e1234, e12) = −(e0 − e5) ∧ χ∗
1 ,

ξ(e1234, e34) = −(e0 − e5) ∧ χ∗
2 ,

ξ(e34, e12) = −i(e0 − e5) ∧ (ω1 − ω2) , (A.21)

and five-forms

τ(e12, 1) = i(e0 − e5) ∧ ω1 ∧ χ2 ,

τ(e34, 1) = i(e0 − e5) ∧ ω2 ∧ χ1 ,

τ(e12, e1234) = i(e0 − e5) ∧ ω2 ∧ χ∗
1 ,

τ(e34, e1234) = i(e0 − e5) ∧ ω1 ∧ χ∗
2 ,

τ(e12, e12) = (e0 − e5) ∧ χ∗
1 ∧ χ2 ,

τ(e34, e34) = (e0 − e5) ∧ χ1 ∧ χ∗
2 ,

τ(e12, e34) =
1

2
(e0 − e5) ∧ (ω1 − ω2) ∧ (ω1 − ω2) . (A.22)

A.2.4 N = 4, SU(3)

The relevant spinors are linear combinations of 1, e1234, e15 and e2345. The associated

spacetime forms are given in section (A.2.2).
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A.2.5 N = 4, (SU(2) × SU(2)) n R
8

We need to consider linear combinations of 1, e1234, e12 and e34. The spacetime forms are

given in section (A.2.3).

A.2.6 N = 8, SU(2)

The SU(2)-invariant Majorana-Weyl spinors are linear combinations of 1, e1234, e12, e34,

e15, e25 e2345 and e1345. There are five types of spinors that occur in ∆+
16

. These are

1 , e1234 , eij , ei5 , eijk5 , i, j, k = 1, 2, 3, 4 . (A.23)

We have already computed form bilinears of examples of all types. Because of this, one can

compute the form spinor bilinears of the remaining pairs by appropriately relabelling the

indices of the forms of the pairs we have already computed. We have done the computation

but the result is not enlightening. Because of this we shall not explicitly list all the forms.

B. A linear system

In order to systematically solve the Killing spinor equations, we determine the action of

the supercovariant derivative on the five types of spinors (A.23) and expand the results

in the basis (A.9). This is similar to the calculation of IIB-supergravity and M-theory

in [31]. We use the following conventions for the indices: A,B,C ∈ {+,−, 1̄, .., 4̄, 1, .., 4},
α, β ∈ {1, .., 4} and k, l,m, n ∈ {1, .., 4} with the restriction k, l,m, n 6= α, β. The Greek

indices are not subject to the sum convention. In particular, we find

1

4
Ω̂A,BCΓBC1 =

1

2

(

Ω̂A,k
k + Ω̂A,−+

)

1 +
1

4
Ω̂A,k̄l̄Γ

k̄l̄1 +
1

2
Ω̂A,+k̄Γ

+k̄1 , (B.1)

1

4
Ω̂A,BCΓBCe1234 = − 1

8
Ω̂A,klε

kl
m̄n̄Γm̄n̄1 +

1

24
Ω̂A,+kε

k
l̄m̄n̄Γ+Γl̄m̄n̄1

+
1

2

(

Ω̂A,−+ − Ω̂A,k
k
)

e1234 , (B.2)

1

4
Ω̂A,BCΓBCeαβ = − Ω̂A,αβ1 +

1

2
Ω̂A,k̄l̄ε

k̄l̄ᾱβ̄e1234

+
1

4

(

Ω̂A,ᾱα + Ω̂A,β̄β + Ω̂A,k
k + Ω̂A,−+

)

ΓᾱΓβ̄1

+
1

2
Ω̂A,k̄αΓk̄Γβ̄1 − 1

2
Ω̂A,k̄βΓk̄Γᾱ1

+
1

2
Ω̂A,+αΓ+Γβ̄1 − 1

2
Ω̂A,+βΓ+Γᾱ1

+
1

4
Ω̂A,+k̄Γ

+Γk̄Γᾱβ̄1 , (B.3)

1

4
Ω̂A,BCΓBCΓ+Γᾱ1 = − 2Ω̂A,−α1 +

1

2

(

Ω̂A,k
k + Ω̂A,ᾱα − Ω̂A,−+

)

Γ+Γᾱ1
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− Ω̂A,−k̄Γ
k̄Γᾱ1 − Ω̂A,αk̄Γ

+Γk̄1 +
1

4
Ω̂A,k̄l̄Γ

+ΓᾱΓk̄l̄1 , (B.4)

1

4
Ω̂A,BCΓBCΓ+Γαe1234 = − 2Ω̂A,−ᾱe1234 −

1

4
Ω̂A,ᾱkε

k
ᾱl̄m̄Γ+Γᾱl̄m̄1

+
1

24

(

−Ω̂A,k
k + Ω̂A,αᾱ − Ω̂A,−+

)

εα
k̄l̄m̄Γ+Γk̄l̄m̄1

− 1

2
Ω̂A,klε

αkl
m̄Γ+Γm̄1 − 1

2
Ω̂A,−kε

αk
l̄m̄Γl̄m̄1 . (B.5)

A similar analysis for the dilatino equation yields
„

∂AΦΓA − 1

12
HABCΓABC

«

1 =

„

∂k̄Φ +
1

2
Hk̄

l
l +

1

2
H+−k̄

«

Γk̄1

+

„

∂+Φ − 1

2
H+k

k

«

Γ+1 − 1

4
H+k̄l̄Γ

+Γk̄l̄1

− 1

12
Hk̄l̄m̄Γk̄l̄m̄1 , (B.6)

„

∂AΦΓA − 1

12
HABCΓABC

«

e1234 =
1

6
Hklmεklm

n̄Γn̄1

+

„

∂+Φ +
1

2
H+k

k

«

Γ+e1234

+
1

12

„

∂kΦ +
1

2
Hkl

l +
1

2
H+−k

«

εk
l̄m̄n̄Γl̄m̄n̄1

+
1

8
H+klε

kl
m̄n̄Γ+Γm̄n̄1 , (B.7)

„

∂AΦΓA − 1

12
HABCΓABC

«

eαβ = −1

2
H+k̄l̄ε

k̄l̄ᾱβ̄Γ+e1234 + H+αβΓ+1 + Hk̄αβΓk̄1

+

„

−∂βΦ +
1

2
Hᾱαβ +

1

2
Hβl

l − 1

2
H+−β

«

Γᾱ1

+

„

∂αΦ − 1

2
Hβ̄βα − 1

2
Hαl

l +
1

2
H+−α

«

Γβ̄1

+
1

2

„

∂+Φ − 1

2
H+k

k − 1

2
H+ᾱα − 1

2
H+β̄β

«

Γ+ΓᾱΓβ̄1

+
1

2

„

∂k̄Φ +
1

2
Hαᾱk̄ +

1

2
Hββ̄k̄ − 1

2
Hk̄l

l +
1

2
H+−k̄

«

Γk̄ΓᾱΓβ̄1

− 1

4
Hαk̄l̄Γ

k̄l̄Γβ̄1 +
1

4
Hβk̄l̄Γ

k̄l̄Γᾱ1

+
1

2
H+αk̄Γ+Γk̄Γβ̄1 − 1

2
H+βk̄Γ+Γk̄Γᾱ1 , (B.8)

„

∂AΦΓA − 1

12
HABCΓABC

«

Γ+Γᾱ1 =
1

3
Hk̄l̄m̄εk̄l̄m̄ᾱΓ+e1234 + 2H−αk̄Γk̄1

+
“

2∂−Φ − H−ᾱα − H−k
k

”

Γᾱ1

+
“

−2∂αΦ + Hαk
k + H+−α

”

Γ+1

+

„

∂k̄Φ +
1

2
Hαᾱk̄ − 1

2
H+−k̄ +

1

2
Hlk̄

l

«

Γ+ΓᾱΓk̄1

+
1

2
Hαk̄l̄Γ

+Γk̄l̄1 − 1

2
H−k̄l̄Γ

ᾱΓk̄l̄1 , (B.9)

„

∂AΦΓA − 1

12
HABCΓABC

«

Γ+Γαe1234 =
1

6

„

∂−Φ +
1

2
H−ᾱα +

1

2
H−k

k

«

εα
k̄l̄m̄Γk̄l̄m̄1

− 2

„

∂ᾱΦ − 1

2
H+−ᾱ +

1

2
Hᾱk

k

«

Γ+e1234

− 1

2

„

∂kΦ +
1

2
Hᾱαk − 1

2
H+−k +

1

2
Hkl

l

«

εαk
l̄m̄Γ+Γl̄m̄1
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− 1

2
Hᾱklε

kl
ᾱm̄Γ+ΓᾱΓm̄1 + H−klε

αkl
m̄Γm̄1

+
1

2
H−ᾱkεk

ᾱl̄m̄ΓᾱΓl̄m̄1 +
1

3
HklmεklmαΓ+1 . (B.10)

The above expressions can be used to construct the linear systems for those backgrounds

for which not all parallel spinors are Killing. We have also used the above equations to

determine the conditions on the geometry of spacetime for the supersymmetric backgrounds

we have examined.
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heterotic string compactifications with fluxes, JHEP 10 (2003) 004 [hep-th/0306088].

[12] P.S. Howe and G. Papadopoulos, Twistor spaces for HKT manifolds, Phys. Lett. B 379

(1996) 80 [hep-th/9602108];

P.S. Howe, A. Opfermann and G. Papadopoulos, Twistor spaces for QKT manifolds,

Commun. Math. Phys. 197 (1998) 713 [hep-th/9710072].

[13] G. Grantcharov and Y.S. Poon, Geometry of hyper-Kähler connections with torsion,

Commun. Math. Phys. 213 (2000) 19 [math.DG/9908015].

[14] S. Ivanov and G. Papadopoulos, A no-go theorem for string warped compactifications, Phys.

Lett. B 497 (2001) 309 [hep-th/0008232];

Vanishing theorems and string backgrounds, Class. and Quant. Grav. 18 (2001) 1089

[math.dg/0010038].

– 71 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB248%2C157
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB148%2C451
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB289%2C264
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C5%2C1647
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C7%2C427
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB274%2C253
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB178%2C357
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C18%2C1333
http://xxx.lanl.gov/abs/hep-th/0012034
http://xxx.lanl.gov/abs/hep-th/9112030
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB381%2C360
http://xxx.lanl.gov/abs/hep-th/9203070
http://jhep.sissa.it/stdsearch?paper=06%282003%29035
http://xxx.lanl.gov/abs/hep-th/0304126
http://jhep.sissa.it/stdsearch?paper=10%282003%29004
http://xxx.lanl.gov/abs/hep-th/0306088
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB379%2C80
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB379%2C80
http://xxx.lanl.gov/abs/hep-th/9602108
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C197%2C713
http://xxx.lanl.gov/abs/hep-th/9710072
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C213%2C19
http://xxx.lanl.gov/abs/math.DG/9908015
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB497%2C309
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB497%2C309
http://xxx.lanl.gov/abs/hep-th/0008232
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C18%2C1089
http://xxx.lanl.gov/abs/math.dg/0010038


J
H
E
P
0
2
(
2
0
0
6
)
0
6
3

[15] J. Gutowski, S. Ivanov and G. Papadopoulos, Deformations of generalized calibrations and

compact non-Kähler manifolds with vanishing first Chern class, Asian J. Math. 7 (2003)

39-80 [math.dg/0205012].

[16] A. Fino, M. Parton, S. Salamon, Families of strong KT structures in six dimensions,

math.DG/0209259.

[17] E. Goldstein and S. Prokushkin, Geometric model for complex non-Kähler manifolds with

SU(3) structure, Commun. Math. Phys. 251 (2004) 65 [hep-th/0212307].

[18] D. Grantcharov, G. Grantcharov, Y.S. Poon, Calabi-Yau connections with torsion on toric

bundles math.DG/0306207.

[19] G.W. Gibbons, G. Papadopoulos and K.S. Stelle, HKT and OKT geometries on soliton black

hole moduli spaces, Nucl. Phys. B 508 (1997) 623 [hep-th/9706207].

[20] J. Michelson and A. Strominger, Superconformal multi-black hole quantum mechanics, JHEP

09 (1999) 005 [hep-th/9908044];

A. Maloney, M. Spradlin and A. Strominger, Superconformal multi-black hole moduli spaces

in four dimensions, JHEP 04 (2002) 003 [hep-th/9911001].

[21] J. Gutowski and G. Papadopoulos, The dynamics of very special black holes, Phys. Lett. B

472 (2000) 45 [hep-th/9910022];

Moduli spaces for four-and five-dimensional black holes, Phys. Rev. D 62 (2000) 064023

[hep-th/0002242].

[22] A. Gray and L.M. Hervella, The sixteen classes of almost hermitean manifolds and their

linear invariants, Ann. Mat. Pura e Appl. 282 (1980) 1.

[23] T. Friedrich, S. Ivanov, Parallel spinors and connections with skew-symmetric torsion in

string theory, Asian Journal of Mathematics 6 (2002), 303-336 [math.DG/0102142]; Killing

spinor equations in dimension 7 and geometry of integrable G2-manifolds J. Geom. Phys. 48

(2003), 1-11 [math.DG/0112201].

[24] S. Ivanov, Connection with torsion, parallel spinors and geometry of Spin(7) manifolds,

Math. Res. Lett. 11 (2004), no. 2-3, 171–186 [math.DG/0111216].

[25] J.P. Gauntlett, D. Martelli, S. Pakis and D. Waldram, G-structures and wrapped NS5-branes,

Commun. Math. Phys. 247 (2004) 421 [hep-th/0205050];

J.P. Gauntlett, D. Martelli and D. Waldram, Superstrings with intrinsic torsion, Phys. Rev.

D 69 (2004) 086002 [hep-th/0302158].

[26] G.L. Cardoso et al., Non-Kähler string backgrounds and their five torsion classes, Nucl. Phys.

B 652 (2003) 5 [hep-th/0211118].

[27] A. Franzen, P. Kaura, A. Misra and R. Ray, Uplifting the Iwasawa, hep-th/0506224.

[28] J. Gillard, U. Gran and G. Papadopoulos, The spinorial geometry of supersymmetric

backgrounds, Class. and Quant. Grav. 22 (2005) 1033 [hep-th/0410155].

[29] McKenzie Y. Wang, Parallel spinors and parallel forms, Ann. Global Anal Geom. Vol 7, No 1

(1989), 59.

[30] B. de Wit and P. van Nieuwenhuizen, Rigidly and locally supersymmetric two-dimensional

nonlinear sigma models with torsion, Nucl. Phys. B 312 (1989) 58;

G.W. Delius, M. Rovcek, A. Sevrin and P. van Nieuwenhuizen, Supersymmetric sigma models

with nonvanishing nijenhuis tensor and their operator product expansion, Nucl. Phys. B 324

(1989) 523.

– 72 –

http://xxx.lanl.gov/abs/math.dg/0205012
http://xxx.lanl.gov/abs/math.DG/0209259
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C251%2C65
http://xxx.lanl.gov/abs/hep-th/0212307
http://xxx.lanl.gov/abs/math.DG/0306207
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB508%2C623
http://xxx.lanl.gov/abs/hep-th/9706207
http://jhep.sissa.it/stdsearch?paper=09%281999%29005
http://jhep.sissa.it/stdsearch?paper=09%281999%29005
http://xxx.lanl.gov/abs/hep-th/9908044
http://jhep.sissa.it/stdsearch?paper=04%282002%29003
http://xxx.lanl.gov/abs/hep-th/9911001
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB472%2C45
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB472%2C45
http://xxx.lanl.gov/abs/hep-th/9910022
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD62%2C064023
http://xxx.lanl.gov/abs/hep-th/0002242
http://xxx.lanl.gov/abs/math.DG/0102142
http://xxx.lanl.gov/abs/math.DG/0112201
http://xxx.lanl.gov/abs/math.DG/0111216
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C247%2C421
http://xxx.lanl.gov/abs/hep-th/0205050
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD69%2C086002
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD69%2C086002
http://xxx.lanl.gov/abs/hep-th/0302158
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB652%2C5
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB652%2C5
http://xxx.lanl.gov/abs/hep-th/0211118
http://xxx.lanl.gov/abs/hep-th/0506224
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C22%2C1033
http://xxx.lanl.gov/abs/hep-th/0410155
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB312%2C58
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB324%2C523
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB324%2C523


J
H
E
P
0
2
(
2
0
0
6
)
0
6
3

[31] U. Gran, G. Papadopoulos and D. Roest, Systematics of M-theory spinorial geometry, Class.

and Quant. Grav. 22 (2005) 2701 [hep-th/0503046];

U. Gran, J. Gutowski, G. Papadopoulos and D. Roest, Systematics of IIB spinorial geometry,

Class. and Quant. Grav. 23 (2006) 1617 hep-th/0507087.

[32] J.M. Figueroa-O’Farrill, Breaking the M-waves, Class. and Quant. Grav. 17 (2000) 2925

[hep-th/9904124].

[33] R. Bryant, Pseudo-riemannian metrics with parallel spinor fields and vanishing Ricci tensor,

[math.DG/0004073].

[34] J. Figueroa-O’Farrill and G. Papadopoulos, Maximally supersymmetric solutions of ten- and

eleven-dimensional supergravities, JHEP 03 (2003) 048 [hep-th/0211089]; Pluecker-type

relations for orthogonal planes, math.ag/0211170.

[35] B. de Wit, D.J. Smit and N.D. Hari Dass, Residual supersymmetry of compactified D = 10

supergravity, Nucl. Phys. B 283 (1987) 165.

[36] B. McInnes, Spin holonomy of Einstein manifolds, Commun. Math. Phys. 203 (1999) 349.

[37] A. Moroianu and U. Semmelmann, Parallel spinors and holonomy group, math.DG/9903062.

[38] U. Gran, J. Gutowski and G. Papadopoulos, The spinorial geometry of supersymmetric IIB

backgrounds, Class. and Quant. Grav. 22 (2005) 2453 [hep-th/0501177].

[39] U. Gran, J. Gutowski and G. Papadopoulos, The G2 spinorial geometry of supersymmetric

IIB backgrounds, Class. and Quant. Grav. 23 (2006) 143 [hep-th/0505074].

[40] G. Papadopoulos and D. Tsimpis, The holonomy of the supercovariant connection and Killing

spinors, JHEP 07 (2003) 018 [hep-th/0306117].

[41] M. Fernandez, A classification of Riemannian manifolds with structure Spin(7), Ann. Mat.

Pura Appl. 143 (1982) 101.

[42] F. Cabrera, Riemannian manifolds with Spin(7)-structure, Publ. Math. Debrecen 46 (3-4)

(1995), 271-283.

[43] S. Chiossi and S. Salamon, The intrinsic torsion of SU(3) and G2-structures, Diff. Geom.,

Valencia 2001, World Sci. 2002, 115 [math.DG/0202282].

[44] F.M. Cabrera, Special almost hermitean geometry, math.DG/0409167.

[45] S. Kobayashi and K. Nomizu, Foundations of differential geometry, vol I, J. Wiley & Sons,

New York-London 1963.

[46] M. Fernandez and A. Gray, “Riemannian manifolds with structure G2,” Ann. Mat. Pura

Appl. (4) 32 (1982), 19-45

[47] G. Papadopoulos, Rotating rotated branes, JHEP 04 (1999) 014 [hep-th/9902166].

[48] J.P. Gauntlett, G.W. Gibbons, G. Papadopoulos and P.K. Townsend, Hyper-Kähler

manifolds and multiply intersecting branes, Nucl. Phys. B 500 (1997) 133 [hep-th/9702202].

[49] G. Papadopoulos and A. Teschendorff, Multi-angle five-brane intersections, Phys. Lett. B

443 (1998) 159 [hep-th/9806191]; Grassmannians, calibrations and five-brane intersections,

Class. and Quant. Grav. 17 (2000) 2641 [hep-th/9811034];

G. Papadopoulos, Brane solitons and hypercomplex structures, math.DG/0003024.

– 73 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C22%2C2701
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C22%2C2701
http://xxx.lanl.gov/abs/hep-th/0503046
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C23%2C1617
http://xxx.lanl.gov/abs/hep-th/0507087
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C17%2C2925
http://xxx.lanl.gov/abs/hep-th/9904124
http://xxx.lanl.gov/abs/math.DG/0004073
http://jhep.sissa.it/stdsearch?paper=03%282003%29048
http://xxx.lanl.gov/abs/hep-th/0211089
http://xxx.lanl.gov/abs/math.ag/0211170
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB283%2C165
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C203%2C349
http://xxx.lanl.gov/abs/math.DG/9903062
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C22%2C2453
http://xxx.lanl.gov/abs/hep-th/0501177
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C23%2C143
http://xxx.lanl.gov/abs/hep-th/0505074
http://jhep.sissa.it/stdsearch?paper=07%282003%29018
http://xxx.lanl.gov/abs/hep-th/0306117
http://xxx.lanl.gov/abs/math.DG/0202282
http://xxx.lanl.gov/abs/math.DG/0409167
http://jhep.sissa.it/stdsearch?paper=04%281999%29014
http://xxx.lanl.gov/abs/hep-th/9902166
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB500%2C133
http://xxx.lanl.gov/abs/hep-th/9702202
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB443%2C159
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB443%2C159
http://xxx.lanl.gov/abs/hep-th/9806191
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C17%2C2641
http://xxx.lanl.gov/abs/hep-th/9811034
http://xxx.lanl.gov/abs/math.DG/0003024


J
H
E
P
0
2
(
2
0
0
6
)
0
6
3

[50] A.H. Chamseddine and M.S. Volkov, Non-abelian vacua in D = 5, N = 4 gauged

supergravity, JHEP 04 (2001) 023 [hep-th/0101202]; Non-abelian solitons in N = 4 gauged

supergravity and leading order string theory, Phys. Rev. D 57 (1998) 6242 [hep-th/9711181].
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